Home Energy Nuclear Electricity Climate Change Lighting Control Contacts Links



By Charles Rhodes, P.Eng., Ph.D.

Large supplies of economic non-fossil energy are required for displacement of fossil fuels and for supply of desalinated water for intensive agriculture.

Nuclear electricity generation is the least expensive non-fossil power source for reliably meeting the urban power load in Ontario because, unlike wind and solar power, nuclear power is continuously available, efficiently uses transmission-distribution and requires minimal balancing energy storage.

In order for intermittent wind and solar energy to be effectively utilized there must be a peak power based firm electricity rate and an energy based interruptible electricity rate. Thus far the Ontario government has implemented smart electricity meters but has failed to implement the required firm and interruptible electricity rates.

Canada has a population of about 33 million people and a land area of about 9 million km^2. Canada is divided into provinces and territories. Ontario is the largest Canadian province with a population of about 12 million people. During the last half century the population of Canada has doubled, primarily due to immigration. The Canadian female fertility rate is insufficient to maintain the population.

The Canadian average population density of about 3.6 persons / km^2 is misleading. Over 80% or the Canadian population lives within less than 20% of the land area. In rural Canada the average population density is less than 0.7 persons / km^2. A typical family farm occupies about 4 km^2. The average per capita energy consumption in Canada is much larger than that of European countries, particularly in the transportation sector.

In Ontario the average consumption of liquid hydrocarbons is about 1330 litres per person per year. However, in rural areas the consumption of liquid hydrocarbons is typically about 4000 litres per person per year.

Canada has a harsh winter climate. An unprotected person trapped outside overnight in mid-winter will usually die. Even relatively temperate southern cities such as Toronto routinely experience winter temperatures below -25 degrees C. More northern interior cities such as Prince George experience winter temperatures below -60 degrees C. Central heating is not a luxury, it is an absolute necessity. Even vacant buildings must be heated to prevent plumbing freezing and to prevent structural damage due to condensation and freeze-thaw cycling. Advocates of solar heating forget that in northern Canada there are contiguous weeks or months during which there is no direct sunlight. For centuries aboriginal people in northern Canada relied on whale oil, seal fat and frozen meat for winter survival.

In effect there are two Canadas, urban Canada and rural Canada. Urban Canada primarily consists of an east-west string of cities located just north of the Canada-USA border. Urban Canada contains most of the Canadian population. Canadian cities are in many ways similar to major cities in Europe and the USA.

The balance of the country is rural Canada. In rural Canada the average population density is very low and the per capita consumption of liquid hydrocarbons is very high.

I will briefly describe normal daily life in rural Canada to indicate why this life is so liquid hydrocarbon intensive. There are some people who say that rural Canadians should simply abandon their liquid hydrocarbon fuel intensive life style. However, that is a hypocritical view. These people forget that many parties around the world rely on energy, agricultural products, forest products and minerals from rural Canada.

Our family lives on the edge of rural Canada, about 100 km north of downtown Toronto. The main benefits of our rural life are intangibles such as quiet, privacy, clean air, wild life, freedom from urban expectations and freedom from urban social problems.

However, there are significant costs of living in rural Canada, particularly for liquid hydrocarbon fuels. My family consists of myself (a retired engineer), my wife (a home maker), my son (a tradesman) and my daughter (an actress-show host-media producer). Prior to my retirement I had to frequently attend major buildings in Toronto and I drove about 40,000 km / year. My wife drives about 15,000 km / year. My son, who has to attend various work sites in the Greater Toronto Area (GTA), drives about 50,000 km / year. My daughter, who maintains small apartments in the cities where she works, drives about 30,000 km / year. Thus our average per capita automobile driving is about 34,000 km / person / year resulting in consumption of over 3000 litres of liquid hydrocarbon fuel per person per year just for automobile transportation.

When our children were young and could not drive themselves, they went to school by bus. Their preschool/elementary school was 8 km away. Their high schools were 15 km and 70 km away. Their post secondary educational institutions were 70 km to 200 km away. However, again these figures are deceptive. The school bus routes are not direct but wind back and forth to collect students from pickup points convenient to their homes. A school bus route is often two to three times as long as the direct route. The costs of leasing, operating and maintaining a large fleet of buses is a major component of the rural education budget. Each school age child in a rural area triggers annual consumption of a substantial amount of liquid hydrocarbon fuel.

Then there is the energy for our home. The only connected utilities that we have are electricity and telephone. There is no utility supplied: natural gas, potable water, sewer, cable TV, hot water or chilled water. Our space heating and potable water heating are by combustion of furnace oil, which in the winter is delivered monthly by tanker truck. We have a drilled well with an electric pump for potable water. We have our own septic system. We have satellite TV and microwave internet services. We have an electric air conditioning unit and we use electricity for cooking, lighting and refrigeration. Due to an unreliable primary electricity supply we have a backup generator. We have a tractor for property maintenance. Our total consumption of liquid hydrocarbons for space heating, potable water heating, standby electricity generation and property maintenance is over 1600 litres per person per year.

Once or twice per annum we visit other members of our family in western Canada or they come to visit us. Either way there is at least 6000 km per person of air travel per round trip.

In short, an issue that differentiates rural Canadians from most other people is greater per capita consumption of liquid hydrocarbon fuel. Daily life in rural Canada requires much more liquid hydrocarbon fuel than does comparable daily life in a city. The population density of rural Canada is insufficient to support transportation of people by rail or to support pipeline distribution of natural gas.

Liquid hydrocarbon fuel consumption in urban Canada is also somewhat higher than in Europe due to urban sprawl. Major Canadian metropolitan areas such as Montreal, Toronto and Vancouver are attempting to address this issue via improvements to public transit and via provision of charging facilities for electric vehicles. However, due to traffic gridlock the average Toronto urban commute is one of the longest in the world.

During the 1950s when I was a child in school I was taught that Canadian liquid petroleum reserves were sufficient for several centuries. However, there was an erroneous implicit assumption that Canadians would be the only ones drawing down these liquid petroleum reserves. Today, with ongoing oil exports to Europe, the USA and Asia the number of people drawing down these reserves has increased by two orders of magnitude, and these reserves are almost exhausted. There is more oil available from tar sands, but recovery of this oil without use of nuclear heat results in substantial fossil CO2 emissions.

Both the Canadian and US governments have lacked the moral fortitude to levy a fossil carbon emissions tax sufficient to force oil sands operators to use nuclear heat rather than fossil fuel heat for oil sand petroleum extraction. Similarly there is no incentive for use of electrolytic hydrogen instead of natural gas for hydrogenation of liquid fuels.

Large scale combustion of fossil fuels is causing major world wide climate change. However, governments around the world have done relatively little to significantly reduce fossil fuel consumption. Typically elected governments have a life span of two to five years whereas the energy and utility investments needed to address climate change have a life span in excess of 60 years. There does not seem to be a solution to this issue other than world wide education of voters as to the climate consequences of continued consumption of fossil fuels. There is little appreciation by most people of the instability of the CO2 presently trapped in bicarbonate ions in the oceans. Release of CO2 from bicarbonate ions in the ocean due to ocean warming precipitated a global extinction of large land animals 55 million years ago.

As petroleum reserves are depleted liquid fossil fuels must be replaced by synthetic liquid hydrocarbon fuels. However, producing synthetic liquid fuels involves several energy intensive steps. These steps include capture of carbon dioxide from the atmosphere by plants to form carbohydrates (bio-matter), agricultural management of the resulting bio-matter, harvesting and drying the bio-matter to obtain carbohydrates, compression of the dried biomatter for transportation, extraction of hydrogen from water, distillation and hydrogenation of the carbohydrates to form methanol and dehydration of the methanol to form energy dense synthetic liquid fuels.

In Brazil, where there is abundant sunlight, ethanol based liquid biofuels are produced using exclusively solar energy. However, in Canada, where there is much less sunlight, the first step (carbon capture from the atmosphere to form carbohydrates) requires almost all of the available solar energy. Implementation of the other liquid hydrocarbon production steps requires renewable or nuclear energy.

One of the problems with the Canadian climate is poor load factor. For example, in Toronto heating plant has to be sized to meet heating requirements at a sustained outside air temperature of -28 degrees C. However, this heating load is only actually experienced for a few days a year. In most years the January-February average outside air temperature is typically -2 degrees C. Hence for most of the winter half of the heating plant capacity is not required. An advantage of energy dense hydrocarbon fuels is that they store well and lend themselves to meeting the peak winter heating load.

Any successful long term energy plan in Canada will almost certainly have to involve low load factor use of stored hydrocarbon fuels for meeting the peak winter space heating load. Subject to suitable interruptible electricity rates these fuels can be synthesized during the spring, summer and autumn using otherwise constrained wind and nuclear energy and stored for subsequent winter use.

Energy engineers do not get to choose whether or not they build energy supply capacity. Their only choice is from amongst the range of available energy supply technologies. The decisions as to how much electricity generation capacity to build are largely population and price driven.

Realistic assessment of the amount of prime energy that is required to displace the existing southern Ontario consumption of liquid fossil hydrocarbons indicates that nearby wind power is not sufficient. The people of Ontario must make hard choices between expensive nuclear power, more expensive solar power and extremely expensive remote hydro and wind power.

Ontario is a leader in development of wind power in Canada. However, it is becoming increasingly apparent that in Ontario delivery of remote northern wind power to major southern markets is extremely expensive. There is lots of wind energy available in northern Ontario. However, the transmission line length required to deliver that energy to cities in southern Ontario is typically about 1000 km. Furthermore, the transmission line utilization efficiency with wind power is only about one third that of nuclear power. In an effort to control transmission costs Ontario is presently only developing wind resources that are within 300 km of load centers. The problem with such restricted geographical development is loss of geographical diversity in wind generation. Without geographical diversity there are many times when the total connected wind generation drops to almost zero.

Wind power without geographical diversity requires additional balancing generation and/or energy storage. Construction of that balancing generation and/or energy storage and related dedicated transmission is very expensive and is politically sensitive. Moreover, the Ontario government has demonstrated that it lacks the moral fortitude to price electricity according to availability. As a consequence much of the existing non-fossil energy generation is constrained off and hence is wasted.

Nuclear electricity can be used to directly displace hydrocarbon fuels in many stationary and limited distance mobile applications. However, for long distance transportation applications use of energy dense liquid hydrocarbons is essential to achieve the required vehicle range. For these applications nuclear energy is needed to convert plant carbohydrates and water into energy dense liquid hydocarbons.

Nuclear energy is available via two paths, fission and fusion. Fission energy is released by neutron induced fission of heavy atoms such as uranium, plutonium and thorium. Fusion energy is released when hydrogen, helium, lithium and/or boron isotopes combine to form helium-4.

A major problem with government funded nuclear power projects is that lawyers and politicians often believe that they are smarter than engineers who have a lifetime of relevant education and practical experience.

When the Canadian Nuclear Safety Commission (CNSC) identified backup power problems with certain Canadian fission reactors and refused to renew their licences until these problems were fixed, the prime minister of Canada, instead of authorizing the necessary funding, fired the head of the CNSC. Subsequent events in Japan at Fukushima Daiichi demonstrated that the CNSC's concerns were fully justified.

This was not the first occasion of stupid government actions affecting the Canadian nuclear industry. The US was no better. After spending hundreds of millions of dollars to develop a reliable liquid sodium cooled fast neutron reactor technology the Clinton administration killed the project as a "cost saving measure". That "cost saving measure" set the US nuclear industry back 30 years as compared to its foreign competitors.

One of the underlying problems with nuclear energy is the amount of technical knowledge that is required to safely and efficiently manage it. Usually persons in government and regulatory bodies have legal rather than technical educations and simply fail to grasp the physical consequences of their decisions. Furthermore, they are not able to properly assess technical evidence when it is presented to them by technical experts, who may lack sophisticated presentation skills.

Governments tend to rely on boards staffed by lawyers rather than on boards staffed by persons with relevant technical expertise. Major problems arise from decisions by board members who simply do not understand the consequences of their decisions.

These problems are aggrevated by use of "overnight capital costs" in government funded energy projects as opposed to the cost to the end user of a delivered monthly peak kVA or a delivered kWh. In government funded and managed projects there is often no sense of urgency to complete on time, even when the interest on construction financing is cumulating at several million dollars per day.

In Ontario there are further problems related to personal egos and personal empire building within Ontario Power Generation, the Nuclear Waste Management Organization, the Ontario Ministry of Energy and the Independent Electricity System Operator.

One of the smartest nuclear energy decisions that the Ontario government ever made was establishment of Bruce Power, a profit motivated company that is responsible for about half of the nuclear electricity generation in Ontario. In some respects Bruce Power sets a performance benchmark for the government owned utility Ontario Power Generation.

From the perspective of replacing Canadian fossil fuel consumption with non-fossil fuels, wide spread use of nuclear energy is inevitable. There are challenges but these challenges are small compared to the problems with the available non-fossil energy supply alternatives. The biggest single challenge is public education.

This web page last updated December 11, 2016.

Home Energy Nuclear Electricity Climate Change Lighting Control Contacts Links