
 

 1

 

 

Nuclear Reactor Physics 
 

lecture notes AP3341 
 

 

 

 

prof.dr.ir. H. van Dam 
prof.dr.ir. T.H.J.J. van der Hagen 

dr.ir. J.E. Hoogenboom 
 

 

 

 

 

Delft University of Technology 

Physics of Nuclear Reactors 

Mekelweg 15, 2629 JB Delft 

The Netherlands 

 

 

April 2005 



 2 



Contents 
 

Chapter 1 5 

Nuclear reactors and nuclear reactions 5 

1.1. Principle of a nuclear reactor .............................................................. 5 
1.2. The fission process.............................................................................. 8 
1.3. Nuclear reactions and neutron cross sections ................................... 15 
1.4. Energy dependence of neutron cross sections .................................. 19 

Chapter 2 23 

Neutron transport 23 

2.1. The neutron transport equation ......................................................... 23 
2.2. The diffusion equation ...................................................................... 28 
2.3. Boundary condition........................................................................... 32 

Chapter 3 35 

Reactor analysis with diffusion theory 35 

3.1. One-group diffusion theory............................................................... 35 
3.2. Multi-zone systems ........................................................................... 42 
3.3. Perturbation theory............................................................................ 48 

Chapter 4 51 

Time-dependent behaviour of reactors 51 

4.1. Introduction ....................................................................................... 51 
4.2. Simple description of reactor kinetics............................................... 51 
4.3. Reactor kinetics with delayed neutrons ............................................ 55 
4.4. Temperature effects........................................................................... 62 
4.5. Burn-up and conversion .................................................................... 65 
4.6. Fission products ................................................................................ 67 
4.7. Reactivity and reactor control ........................................................... 71 

Chapter 5 Chapter 5 75 

Energy dependence of the neutron flux 75 

5.1. Multi-group diffusion theory ............................................................ 75 
5.2. Energy transfer in elastic collisions .................................................. 77 
5.3. The epithermal spectrum for moderation.......................................... 83 
5.4. Fermi age theory ............................................................................... 85 
5.5. The thermal neutron spectrum .......................................................... 88 
5.6. Calculation of group cross sections .................................................. 90 
5.7. Treatment of resonances ................................................................... 97 



 4 

Chapter 6 99 

The neutron cycle in a thermal reactor 99 

6.1. The four-factor equation ................................................................... 99 
6.2. The neutron yield factor..................................................................103 
6.3. The thermal utilisation factor..........................................................105 
6.4. The fast fission factor......................................................................106 
6.5. The resonance escape probability ...................................................107 
6.6. k∞ as a function of the moderator-to-fuel ratio ...............................108 
6.7. Leakage factors ...............................................................................109 

Chapter 7 111 

Reactor types 111 

7.1. Light-water reactors ........................................................................111 
7.2. The fuel cycle of a light-water reactor............................................115 
7.3. Other reactor types ..........................................................................117 
7.4. The international situation with regard to nuclear energy ..............121 

 

Appendix 125 

 

Literature 131 

 



 

 5

 

Chapter 1 

Nuclear reactors and nuclear reactions 

1.1. Principle of a nuclear reactor 

In a nuclear reactor certain very heavy nuclei (e.g. 235
92 U ) can be split into two fragments by 

neutrons, whereby a relatively large amount of energy is released and, moreover, a few new 

neutrons, which in their turn can cause new fissions. If on average one of the neutrons released 

in a fission causes a new fission, a steady state chain reaction is initiated, whereby energy is 

continuously being released. A fission releases circa 200 MeV (1 eV = 1.6⋅10-19 J). Compared 

with a chemical reaction, in which a few eV are released (for example, compare the combustion 

of 1 m3 of natural gas with an energy content of 30 MJ), this is an enormous amount of energy. 

Although it is possible to sustain a chain reaction with a ball of 235
92 U  a little bit larger than a 

tennis-ball, such a structure is unsuitable for generating a large amount of energy. To that end, 

one applies a coolant that can effectively remove the heat and a much larger amount of uranium 

is placed in the reactor core. Moreover, pure 235
92 U  does not occur in nature. The composition of 

natural uranium, which is found in various ore layers in the earth’s crust, consists of the isotopes 
234U, 235U and 238U with weight percentages as stated in Table 1.1. 

 

Table 1.1. Composition of natural uranium 
 

Isotope weight percentage mass number radioactive half-life 
234

92 U  

235
92 U  

238
92 U  

0.006  

0.712 

99.282 

234.0409 

235.0439 

238.0508 

2.4 105 a 

7.0 108 a 

4.5 109 a 

 

 

Hereafter, it will become evident why e.g. 238U is much less suited for fission by neutrons, 

because of which the percentage 235U, the degree of enrichment, is very important. For 

economic reasons, one chooses a degree of enrichment for the nuclear fuel in a reactor of about 

3 %. A reactor core is formed by placing together a large number of fuel elements in a large 

reactor vessel. A fuel element consists of a number of slender, long rods with uranium (usually 

in the form of UO2) in a rectangular fuel lattice, between which the coolant (mostly water) 
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flows. In order to prevent chemical reactions between the coolant and the nuclear fuel, the 

nuclear fuel is housed in a metal cladding. 

 

 
 

Figure 1.1. Fuel elements in a reactor 
 

Figure 1.1 shows a possible shape of a fuel assembly. The heat generated in the nuclear fuel is 

transferred to the cooling water, which is pumped upward along the rods. The water can start to 

boil by this. The steam is subsequently led to a steam turbine, in which the blades are driven and 

a rotation is induced. The turbine shaft subsequently drives an electrogenerator, which generates 

the electric energy and supplies it to the electrical power network. The expanded steam from the 

turbine is condensed, after which the water is pumped through the core again. Cooling water, 

which is drawn from river or seawater, is used for condensation of the steam, or one applies a 

cooling tower. Figure 1.2 shows a schematic drawing of such a so-called boiling-water reactor. 
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Figure 1.2. Principle sketch of a boiling-water reactor 
 

 

In a so-called pressurized-water reactor (see Figure 1.3) the pressure of the water in the reactor 

is kept much higher, so that boiling in the core does not occur. The heated water is led to a 

steam generator, in which heat is transferred to water from the secondary side, which is under a 

lower pressure, so that it starts boiling. The steam is then led to the turbine again. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Principle sketch of a pressurized-water reactor 
 

The water in a boiling-water or pressurized-water reactor not only serves as coolant, but also for 

slowing down the neutrons in their energy. The neutrons released during fission have a high 

energy, as we will see in the next section, whereas the chance of causing a new fission is larger 

if the neutrons have a low energy. By collisions with light nuclei such as hydrogen in water, the 

neutrons lose energy, so that the water also works as moderator. 
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Finally, the neutrons get an energy distribution that corresponds with the heat movement of the 

atomic nuclei. Therefore, reactors in which a moderator is applied are also referred to as thermal 

reactors. In reactors in which no moderator is applied, the neutrons predominantly keep a high 

energy. These reactors are called fast reactors. In the next sections, first we will go into the 

fission process in order to understand why energy is released in nuclear fission and why only 

certain nuclei can be used. Further, other possible interactions of neutrons with a nucleus will be 

discussed and the chance of interactions will be quantified. In the next chapter, an equation can 

then be derived, which describes the transport of neutrons in a reactor core. From the solution of 

this equation (or a simplified form thereof), the conditions that a reactor core must satisfy in 

order to enable a self-sustaining chain reaction of fissions can be derived. 

 

1.2. The fission process 

 

The protons and neutrons in an atomic nucleus are held together by the nuclear forces (strong 

force). Therefore, energy is required for breaking apart the nucleus into the separate nuclear 

particles or nucleons. This binding energy of a nucleus is obtained by imaginary composition of 

the nucleus from the separate nucleons, because the mass of the whole nucleus is less than the 

sum of the masses of the separate nucleons. According to the relation of Einstein E=mc2, this 

so-called mass defect has been converted into potential energy: the binding energy Eb. For a 

nucleus with A nucleons (A is the so-called mass number), the binding energy per nucleon Eb/A 

can be calculated. This is shown in Figure 1.4 as a function of the mass number. 

For low mass numbers it increases rapidly, with some irregularities in the case of light nuclei, 

reaches a maximum of 8.8 MeV at A=60 and after that decreases slowly. From this figure it 

becomes evident that energy can be produced by fusion of light nuclei or by fission of heavy 

nuclei. 

 

 
Figure 1.4. Binding energy per nucleon as a function of the mass number A 
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The binding energy of atomic nuclei as a function of the mass number A and the number of 

protons Z can be described with the following semi-empirical equation: 
2 2

2/3 3/ 4
1/ 3

( )( )  15.76   17.81  0.711   23.702   34 b
Z N ZE MeV A A A

AA
−−

= − − − ±  (1.1) 

  

The physical meaning of this equation will now be discussed term by term. Seeing that the 

attracting forces between the nucleons mainly operate via direct neighbours, the positive first 

term in (1.1) will be proportional to the number of nucleons A in the nucleus. One can call this 

the volume term. Hereby it is neglected, however, that particles at the surface of the nucleus are 

not completely surrounded by other particles. Consequently, the binding energy has been 

overestimated with an amount that must be proportional to the surface area of the nucleus. By 

analogy with a liquid drop this effect is indicated as the surface tension effect. This term 

(surface term) must be proportional to the surface area, so with A2/3. The third term is connected 

with the coulomb interaction between the protons, which lowers the binding energy because of 

the repulsion between charges of equal sign. The potential energy of an electrically charged 

sphere is proportional to Z2/R, whereby R is proportional to A1/3, which yields the third term 

(coulomb term). 

The last two terms in (1.1) cannot be described as ‘classically’ as the first three. In atomic nuclei 

there is a tendency to form groups of neutron/proton pairs. Especially in the case of light nuclei, 

one sees that those with an equal number of protons and neutrons are very stable. The heavier 

stable nuclei, however, contain more neutrons than protons. This excess of neutrons is necessary 

in order that the attractive forces between the neutrons and between the neutrons and protons 

can provide some compensation for the repulsion between the protons (third term). At the same 

time, however, some instability is introduced because the surplus of neutrons occupies a number 

of energy levels in the nucleus, which do not contain protons. A correction factor must be 

introduced for this, the so-called symmetry term, which is also important in the case of a proton 

surplus; therefore this term is quadratic in N-Z. 

The last term is the pairing term, which accounts for the fact that nucleons have a spin moment 

of momentum or ‘spin’. This spin effect finds expression in the fact that nuclei with an even 

number of protons and an even number of neutrons are very stable thanks to the occurrence of 

‘paired spin’. When a nucleus contains an odd number of both particle types, it is nearly always 

unstable; the only exceptions are 2 6 10 14
1 3 5 7H, Li, B and N . 

For this fifth term the following ‘recipe’ holds: 

 

even/even nuclei : pairing term positive 

odd/odd nuclei :  pairing term negative 

even/odd or odd/even nuclei :  pairing term = 0 
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With the aid of (1.1) the binding energy can be calculated fairly accurately and it can be 

determined, for example, at which value of A for a given Z the binding energy is maximum, i.e. 

which nuclides have the largest stability (for example 27
13 Al and 64

28Ni ). 

Table 1.2 shows the influence of the various effects on the binding energy for a light, medium-

weighted and heavy nuclide. 

 

Table 1.2. Binding energy (in MeV) for some nuclides 
 

Effect 40
20Ca  107

47 Ag  238
92 U  

volume term 

surface term 

coulomb term 

symmetry term 

pairing term 

630 

-208 

-83 

0 

+2 

1686 

-401 

-331 

-37 

0 

3751 

-684 

-971 

-290 

+0.6 

calculated Eb 

measured Eb 

341 

342 

917 

915 

1806 

1802 

measured Eb/A 8.6 8.6 7.6 

 

From Figure 1.4 we see that, if we can split a 235
92U nucleus into two parts, the binding energy of 

the fragments (A ≈ 120) together is larger than that of the original nucleus, whereby circa 235 x 

(8.5 – 7.6) ≈ 200 MeV is released. 

 

The fission process consists of splitting a nucleus into roughly equal parts. In principle, any 

nucleus, if brought into sufficiently high excited state, can be split. The amount of excitation 

energy that is required to enable nuclear fission can be estimated from the magnitude of the 

electrostatic barrier and the dissociation energy of the fission in question. 

 
In Figure 1.5 the potential energy of two fission fragments has been sketched as a function of 

the distance between their centres. The height of the potential barrier is approximately given by 

( ){ }2
1 2 0 1 2/ 4CE Z Z e R Rπε= +  in which R1 and R2 are the respective nuclear radii and ε0 is 

the permittivity of the vacuum. To the left of the maximum, a bound state occurs as a result of 

the nuclear forces. 

 

The dissociation energy Ed is equal to the difference between the binding energy of the 

compound nucleus and the sum of the binding energies of the fission fragments and can thus be 

estimated with (1.1). The minimum activation energy Ea that has to be added to a nucleus to 

cause fission is thus EC – Ed. 
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Figure 1.5. Potential energy as a function of the distance between two fission fragments 
 

 

When the mass of a nucleus is larger than the sum of the masses of the fragments into which the 

nucleus can be separated, the first will show a tendency towards instability, because fission is 

accompanied by the release of energy. This tendency is thus present in nuclei sufficiently far 

from the ‘binding energy maximum’ in Figure 1.4, so for A > 100. However, seeing that the 

activation energy Ea of nuclides with mass numbers below about 230 is very large, spontaneous 

fission of these nuclides does not occur; for A > 260, Ea is negative, so that these nuclei have a 

very short radioactive life. Table 1.3 gives the minimum activation energy for fission of a 

number of nuclei. 

 

Table 1.3. Energy values (in MeV) important for fission 
 

mass number A  

16 60 100 140 200 236 

potential barrier EC 

dissociation energy Ed 

activation energy Ea 

4 

-12.7 

18.5 

32 

-16 

48 

62 

15 

47 

110 

48 

62 

175 

135 

50 

210 

205 

~5 

 

The excitation energy can be added to a nucleus by bombardment with photons or particles. 

With the aid of gamma bombardment one can determine the value of Ea. For example, the 

following values have been found: 

distance 

potential 
barrier 

ground state of 
compound 
nucleus 

potential 
energy 
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 236U : Ea = 5.3 MeV 

 

 239U : Ea = 5.5 MeV 

 

The most attractive method of causing fission, however, is by forming a compound nucleus with 

the aid of a neutron. Indeed, by absorption of a neutron, both the kinetic energy and the binding 

energy of the neutron become available for bringing the compound nucleus into an excited state, 

while no coulomb forces need to be overcome such as in the case of charged particles. If the 

excited state in the energy diagram of Figure 1.5 is above the potential barrier, then the 

possibility of fission occurs. By applying (1.1) one finds that by absorption of a neutron in 235U 

an amount of binding energy becomes available of: 

 

 Eb(236U) − Eb(235U) = 6.6 MeV 

 

In the case of 238U one finds: 

 

 Eb(239U) − Eb(238U) = 5.1 MeV 

 

From this it follows that for fission of 238U the neutron must have a minimum kinetic energy of 

5.5 – 5.1 = 0.4 MeV, while absorption of a neutron without kinetic energy can already cause 

fission of 235U. In general, heavy nuclei with an odd number of neutrons (233U, 235U, 239Pu) can 

easily be split, because the neutron that is absorbed to form a compound nucleus with these 

nuclei is an ‘even’ neutron, so that the binding energy due to the pairing effect is large. On the 

other hand, the heavy ‘even’ nuclei (232Th, 238U, 240Pu, 242Pu) have an energy threshold for 

fission by neutrons, because the absorbed neutron is an ‘odd’ neutron, which makes relatively 

little binding energy available. For these nuclides fission is thus a threshold reaction. 

When a nucleus is excited above the potential barrier, fission need not always occur. It is also 

possible that the excitation energy rapidly dissipates by emission of gammas; in this case the 

reaction is referred to as a capture reaction or (n,γ) reaction. This is detrimental to sustaining the 

chain reaction in a reactor. 

During the spontaneous fission reaction, immediately a few neutrons are emitted as a result of 

the large neutron surplus in the fission products. The average number (v) increases with 

increasing excitation energy, so with the kinetic energy of the absorbed neutron. For example, in 

the case of 235U: 

 

 v(E) = 2.44 + 0.095 E (MeV) 
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with E the kinetic energy of the neutron in MeV. 

 
Figure 1.6. The fission spectrum of  235U 

 

The neutrons emitted during fission have an energy distribution as sketched in Figure 1.6, which 

in analytical form can be written as: 
 

 /

3

2( ) E TE Ee
T

χ
π

−−  (1.2) 

 

in which T is a fictitious temperature in units of energy (T = 1.3 MeV) and χ (E)dE the fraction 

of neutrons with an energy between E and E + dE; the average neutron energy is 3/2 T ≈ 2 

MeV. 

Figure 1.7. Yield of fission products 

 

yield 

mass number 
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There are about 60 primary fission products, the yield of which per fission is distributed 

according to the ‘camel curve’ sketched in Figure 1.7. From this figure a preference appears for 

asymmetric fission. The primary fission products, which are in a highly excited state, lose their 

redundant energy by decay. This can happen by emission of photons and neutrons. When the 

excitation energy has become smaller than the binding energy of the neutrons in the fission 

fragments, the prompt neutron emission stops and the remaining energy will be released in the 

form of photons, the so-called prompt gamma radiation. 

 

Fallen back into the ground state the fragments will still be unstable. As the fragments then still 

have a neutron surplus, it is obvious that most fission fragments will decay into a more stable 

state through β emission. Often a multi-stage β decay is necessary for obtaining a stable 

nucleus, for example: 

 

 6
135 135 135 135 135

52 53 54 55 5618 6.6 9.2 2.10
( )s h h a

Te I Xe Cs Ba stableβ β β β− − − −

⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→  

 or 

 149 149 149
60 61 621.7 53 ( )h hNd Pm Sm stableβ β− −

⎯⎯⎯→ ⎯⎯→  

 

The largest part of the energy produced during fission (about 80 %) becomes available in the 

form of kinetic energy of the fission fragments. The other part is distributed over the kinetic 

energy of the neutrons and the radiation energy. The total energy amounts to about 203 MeV 

per fission, distributed as shown in Table 1.4. In a reactor, per fission circa 195 MeV becomes 

available, being the total energy minus the energy of the neutrinos. However, neutron capture 

processes in a reactor produce additional energy, by which the total energy becoming available 

amounts to about 200 MeV per fission. This means that circa 3.1⋅1010 fissions per second are 

required to produce a power of 1 W and that burn-up of 1 g of uranium yields about 1 MWd 

(megawatt day) of energy (verify this!). 

 

Table 1.4. Energy distribution during fission 
 

 energy (MeV) 

kinetic energy fission fragments 

prompt γ radiation 

kinetic energy fission neutrons 

γ-energy fission products 

β-energy fission products 

neutrinos 

169.58 

6.96 

4.79 

6.26 

6.43 

8.68 

total 202.70 
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1.3. Nuclear reactions and neutron cross sections 

 

Atomic nuclei can undergo interactions with other nuclei, elemental particles (protons, neutrons, 

electrons) and electromagnetic radiation (photons). For reactor physics we can confine ourselves 

to interactions with neutrons, which due to their electrical neutrality do not experience coulomb 

repulsion and can thus become involved in interactions with nuclei already at very low energy. 

In the description of neutron-nucleus interactions the ‘compound-nucleus model’ proposed by 

Bohr in 1936 can be used. According to this model two consecutive phases can be discerned in a 

nuclear reaction: 

 

1) The incident particle is absorbed by the nucleus and forms a compound nucleus 

with it. 

2) After a short time the compound nucleus disintegrates by emission of a particle, 

which need not be equal to the incident particle. 

 

Because a particle is absorbed in the target nucleus, an amount of energy will be added to the 

compound nucleus that is equal to the binding energy of the particle plus the kinetic energy of 

this particle. Because conservation of momentum must be satisfied, part of the total energy is 

converted into kinetic energy of the compound nucleus, while the remaining energy causes the 

compound nucleus to attain a high-energy state. The first part of the reaction can be written as 

follows: 

 

 1 1
0 *A A

Z Zn X X++ →  

 

in which the asterisk indicates that the compound nucleus is in an excited state. Immediately 

after formation of the compound nucleus, all of the energy is concentrated around the captured 

particle. In consequence of the interactions between the nuclear particles, this energy will 

rapidly spread over all particles in the nucleus. This distribution has a statistical character, 

whereby it is possible that a particle gets an energy that is larger than its binding energy. The 

compound nucleus then can lose its excess energy by emission of this particle. In the previous 

section we already saw that in the case of very heavy nuclei it is possible that the energy is 

distributed in such a way that two fragments arise: the nuclear fission. Excess energy can also 

be emitted in the form of electromagnetic radiation (photons); in that case one speaks of a (n,γ) 

reaction. 

 

The second phase of the neutron-nucleus interaction can now be written as follows: 
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1 2

1 2

1
0

1 1
0

1
1 11
3 4
2 2
1

1
1 2 0

( , )

2 ( , 2 )

( , )
*

( , )

( , )

( , )

A
Z
A

Z

A
ZA

Z A
Z
A

Z
A A
Z Z

X n n n reaction

X n n n reaction

Y p n p reaction
X

Y He n reaction

X n reaction

Y Y v n n f reaction

α

γ γ

−

−+
−
−

+

′⎧ + −
⎪

+ −⎪
⎪ + −⎪→ ⎨

+ −⎪
⎪ + −⎪
⎪ + + −⎩

  

    
In the (n,n/ ) reaction or inelastic scattering, part of the excitation energy is emitted in the form 

of gamma radiation. The last reaction is the fission reaction. Hereby it must hold that Z1 + Z2 = 

Z and A1 + A2 + v = A + 1. 

The remaining nucleus after one of these reactions in many cases will not be stable and will 

transform into a more stable nucleus under emission of β and/or α particles, whereby often also 

photons are released. 

 

For neutron-nucleus reactions the following division is used: 

 

  elastic scattering 

 scattering 

  inelastic scattering 

             neutron-nucleus reactions    

  capture 

 absorption 

  fission 

 

The concept of the microscopic cross section is introduced to represent the probability of a 

neutron-nucleus reaction. Suppose that a uniform beam of neutrons with intensity Ι cm-2 s-1 

strikes a thin ‘film’ of atoms (one atomic layer thick) with Na atoms/cm2. Then the number of 

interactions C per cm2 per second will be proportional to the intensity Ι and the atom density Na. 

We define the proportionality factor as the microscopic cross section (or just cross section) σ:  

 

 aC N Iσ=  (1.3) 

 

The microscopic cross section is often expressed in ‘barns’ (1 b = 10-24 cm2); from this 

definition it follows that one can consider σ as the effective ‘target area’ that a nucleus presents 

to the neutron. The microscopic cross section in general is dependent on the neutron energy and 

the type of reaction. In accordance with the foregoing scheme one distinguishes: 
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  σse 

            σs 

  σsi 

                                                      σt 

  σc (σnγ +σnp +σnα +…) 

            σa 

  σf 

 

In order to be able to define the concept of the ‘microscopic cross section’, in the foregoing our 

starting point was a thin film of atoms. In order to be able to determine the microscopic cross 

section, transmission measurements are performed on plates of materials. Starting from the 

presumption that no fission or scattering occurs, the neutron attenuation by a plate with 

thickness x will be calculated (see Figure 1.8). 

 

 
Figure 1.8.  Neutron transmission through a plate 

 

Assume that Ι0 neutrons per cm2 and per second perpendicularly strike a plate, the atomic 

number density of which is N (nuclei per cm3).  Of a layer dx in the plate, the nucleus density 

per unit area Na = Ndx. Then, according to the definition of the microscopic cross section, the 

reaction rate per unit area is Nσ Ι(x)dx. This is equal to the decrease of the beam intensity, so 

that: 

 

 dI N Idxσ− =  (1.4) 

      

Integration gives: 

 

 0( ) N xI x I e σ−=  (1.5) 
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The microscopic cross section σ refers to one nucleus. The product 

 

 NσΣ =  (1.6) 

 

refers to one cm3 of material and is called the macroscopic cross section, which in fact is an 

incorrect name, because it is not a cross section (dimension L-1). From (1.5) it follows that the 

probability P(x) that a neutron will travel a distance x in the material concerned without 

becoming involved in a reaction is: 

 

  ( ) xP x e−Σ=  (1.7) 

 

The probability that a neutron will be involved in a reaction between x and x + dx is equal to 

Σdx, so that for the mean free path λ of the neutrons it follows that: 

 

 
0

1xxe dxλ
∞

−Σ= Σ =
Σ∫  (1.8) 

  

whereby one can distinguish λs, λa, etc. This quantity is also referred to as the relaxation length, 

because it is the distance in which the intensity of the neutrons that have not caused a reaction 

has decreased with a factor e. 

 

If ρ represents the density of a material with mass number A, then the following holds: 

 

 AN Nρ
=
Α

 (1.9) 

 

in which NA is Avogadro’s number = 6.022⋅1023 mol-1. When one has a mixture of nuclei, it 

holds that: 

 

 mixture ii
N ισΣ = Σ  (1.10) 

 

in which Ni represents the number of nuclei of the i-th type per cm3 in the mixture concerned. 
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1.4. Energy dependence of neutron cross sections 

 

Besides a ground state, atomic nuclei also have higher energy levels, which can be excited. The 

lowest energy levels of the compound nucleus, which is formed in a neutron-nucleus 

interaction, are relatively far apart; for medium-weighted nuclei (A = 100 – 150) circa 0.1 MeV. 

The high energy levels become closer and closer to each other. For an excitation energy of 

about 8 MeV, as is the case after capture of a neutron with low kinetic energy, the separation 

between the levels is only 1 – 10 eV. Figure 1.9 schematically indicates the position of the 

energy levels during the formation of a compound nucleus. 

 

 
 
 
 

Figure 1.9. Energy diagram of a neutron-nucleus interaction 
 

 

The energy levels of a nucleus are no sharp ‘lines’, but show a certain width Γ, which according 

to the uncertainty principle of Heisenberg is connected with the average time before a nucleus in 

an excited state decays by emission of a photon or other particle. If there are several decay 

possibilities for the compound nucleus (emission of a photon, neutron, etc. or fission), we 

distinguish partial level widths Γγ, Γn, Γf, etc., which summed yield the total level width  Γ. 

 

If the excitation energy of the compound nucleus corresponds with one of the level energies, the 

probability of an interaction is large: resonance occurs. As the excitation energy depends on the 

kinetic energy of the neutron, the probability of an interaction and thus the microscopic cross 

section varies strongly with the energy of the neutron. Breit and Wigner, on the ground of 

quantum-mechanic considerations, have derived the following expression for the microscopic 

cross section σna for an interaction whereby the neutron is included in the nucleus and a particle 

a (possibly the same neutron again) is emitted: 

 

 ( ) 2 2( ) ( / 2)
n a

na
r

E
E E

λσ
π

2 Γ Γ
=
4 − + Γ

 (1.11) 

excitation energy 

added 
kinetic 
energy 

ground state 
initial nucleus 

Ground state of 
compound nucleus 
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in which λ = h/mv is the de Broglie wavelength of the neutron and Er the resonance energy. The 

microscopic cross section shows a maximum if the kinetic energy E of the neutron equals Er. If 

E = Er ± Γ/2, the value of the microscopic cross section is halved, so that Γ indicates the width 

of the resonance peak at half height. As the level widths are often small, the resonance peaks 

can be very sharp. Figure 1.10 gives an example. 

 

 
Figure 1.10. Microscopic cross section at a resonance 

 

According as the neutron energy increases, the peak height of the resonance decreases and the 

resonances become relatively closer to each other, so that they finally cannot be distinguished 

anymore (see Figure 1.11). 

 

 
Figure 1.11. Microscopic cross section of a 238U nucleus for neutron capture 
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For the derivation of the Breit-Wigner equation the starting point is an unmoving nucleus, 

which is struck by a neutron. In reality the nucleus will also have a kinetic energy as a result of 

heat movement. This expresses itself in the microscopic cross section, because averaging over 

the energy distribution of the nuclei must take place. Although the average energy of the nuclei 

is small, at room temperature 0.025 eV, this averaging still has noticeable consequences for the 

resonances, because the width of the resonances can be of the same order of magnitude. This 

leads to broadening of the resonances and lowering of the top value. This so-called Doppler 

effect is thus temperature dependent and plays an important role in reactors. 

The microscopic cross section outside the resonance is also determined by the behaviour of the 

level widths Γn, Γγ, … as a function of the neutron energy. The level widths Γγ and Γf appear to 

be rather constant, whereas Γn increases approximately proportional to √ E. From this it can be 

derived that for energies much lower than the lowest resonance energy, the capture and fission 

cross sections behave as follows 

 

 
1 1, ( )f E

vEγσ σ ÷ ÷  (1.12) 

 

One finds this ‘1/v-relation’ for many nuclides and it means that the probability of such a 

reaction is proportional to the time that the incident neutron spends in the proximity of the 

nucleus. 

For scattering, the microscopic cross section decreases sharply outside the resonance, and the 

so-called potential scattering will predominate, whereby the neutron is scattered by the potential 

field of the nucleus and does not form a compound nucleus. The potential-scattering cross 

section is constant over a large energy range, but decreases at high energies. For light nuclides, 

at low energies chemical-bonding effects can occur, by which the microscopic cross section is 

larger than that of the free atomic nucleus (e.g. H in H2O). 

In addition to elastic scattering, whereby the total kinetic energy of the particles is conserved, 

also inelastic scattering can occur. In that case the nucleus remains in an excited state after 

emission of the neutron and rapidly decays to the ground state under emission of a photon. The 

incident neutron then must have sufficient energy to be able to excite this level, so that inelastic 

scattering is a threshold reaction. 

Numerical data for microscopic cross sections of many nuclides are available as computer data 

files (ENDF/B, Evaluated Nuclear Data File or JEF, Joint Evaluated File). The microscopic 

cross sections for many nuclides and various reactions can be represented graphically by various 

computer programs making use of these data files. 

The energy dependence of the microscopic cross section can be summarised as: 
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 capture and fission : 1/v + resonances 

 elastic scattering : constant/decreasing + resonances 

inelastic scattering : threshold reaction; for light nuclides a few MeV,  

 for heavy nuclides 10 – 100 keV 

resonances : width Γγ, Γf constant; Γn ÷ √E 

   peak width decreasing with E 

   for light nuclides Er > 1 MeV, 

   for heavy nuclides Er > 1 eV 

   as a result of resonances at very low energy  

 e.g. 0.1 eV) deviations occur in the 1/v relation 
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Chapter 2  

   Neutron transport 

2.1. The neutron transport equation 

 

As the free neutrons play an essential part in sustaining the fission reactions in a nuclear reactor, 

studying the neutron distribution in a reactor is an important part of reactor physics. Generally 

put the question is: how do the free neutrons distribute themselves in place, energy, time and 

direction of movement? Hereby not the individual life histories of neutrons are concerned, but 

the statistical average behaviour of a very large number of neutrons. The mathematical 

description of the neutron distribution is based on a neutron balance equation, which is called 

the neutron transport equation. This equation is a linearized form of the Boltzmann equation, 

known from the kinetic gas theory. Linearization is possible because mutual interactions 

between neutrons are negligible in nuclear reactors; in other words, the neutron distribution is 

wholly determined by interactions between neutrons and nuclei of the medium. 

 

The neutron distribution in a system is completely described by the differential neutron density 

n(r,E,Ω,t), defined as follows: 

n(r,E,Ω,t)dVdEdΩ = number of neutrons at time t in volume element dV, with energy between 

E and E + dE, which moves in a solid-angle element dΩ around the direction Ω. This quantity is 

thus a function of seven independent variables: three for the place, one for the energy, two for 

the direction and one for the time. 

 

Instead of the neutron density, in reactor physics one usually uses the angle-dependent flux 

density φ: 

 

 ( , , , ) ( , , , )r E t n r E t vφ Ω = Ω  (2.1) 

 

in which v is the neutron velocity. This quantity indicates the number of neutrons that, moving 

in direction Ω, passes through a unit area perpendicular to Ω per unit time. Seeing that v is the 

distance covered per unit time, one can also interpret φ = nv as the total distance covered per 

unit volume and per unit time. 
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As Σ is the probability of interaction per unit path length, from this it follows that the number of 

interactions per unit volume and per unit time R equals 

 

 R φ= Σ  (2.2) 

 

In reactor physics one often works with differential quantities, whereby for ease of notation’s 

sake no differentiation signs are used, but by omission of variables over which has been 

integrated it is indicated how far the quantity is still ‘differential’, such as: 

 

 
0

( , , ) ( , , , )r t r E t dEφ φ
∞

Ω = Ω∫  (2.3) 

 

 
4

( , , ) ( , , , )r E t r E t d
π

φ φ= Ω Ω∫  (2.4) 

 

 
0 4 0 4

( , ) ( , , , ) ( , , ) ( , , )r t r E t dEd r E t dE r t d
π π

φ φ φ φ
∞ ∞

= Ω Ω = = Ω Ω∫ ∫ ∫ ∫  (2.5) 

 

The last quantity φ(r,t) is the total neutron flux density, mostly called the flux. It can be 

interpreted as the number of neutrons per second moving through an imaginary small sphere 

with a cross section of 1 cm2. 

 

In order to develop an equation describing the transport of neutrons, we consider an arbitrary 

volume V, enclosed by a surface S, for which a balance is made. Our starting point is the 

number of neutrons in V with an energy between E and E + dE and with direction in the solid 

angle dΩ around Ω. This number is equal to 

 

 ( , , , )
V

n r E t dVdEdΩ Ω∫  

 

The change of this number in time is the balance of all processes that make this number increase 

or decrease: 

 

1. increase by the presence of neutron sources, among which fission, 

2. increase by scattering of neutrons with other energies and directions to the energy range 

dE and solid angle dΩ, 
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3. decrease by net outflow of neutrons (this can also be negative, by which there is a net 

inflow of neutrons), 

4. decrease by neutrons undergoing an interaction. 

 

For the contribution under 1 we define the source strength S(r,E,Ω,t), so that the increase of the 

neutrons considered is 

 

 ( , , , )
V

S r E t dVdEdΩ Ω∫  

 

For the contribution under 2 we introduce the macroscopic differential scattering cross section 

   ( , , )s r E E ′′Σ → Ω →Ω  so that 

 

 ( , , )s r E E dEd′′Σ → Ω →Ω Ω  

 

is the probability per path length for scattering of neutrons with energy E/ and direction Ω/ to an 

energy between E and E + dE and direction in the solid angle dΩ around Ω. The increase of the 

number of neutrons then is 

 

 
0 4

( , , ) ( , , , )s
V

r E E r E t dE d dVdEd
π

φ
∞

′ ′ ′′ ′ ′Σ → Ω →Ω Ω Ω Ω∫ ∫ ∫  

 

When calculating the decrease (or increase for a negative result) by net outflow of neutrons, the 

possibility that the direction Ω of the neutrons need not be the same as that of the normal vector 

n at the surface (see Figure 2.1) must be taken into consideration.  

 
Figure 2.1. Leakage from volume V 
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The net outflow is now given by 

 

 ( , , , ) ( , , , )
S V

n r E t dEd dS r E t dVdEdφ φ⋅Ω Ω Ω = ∇⋅Ω Ω Ω∫ ∫  

where use is made of the divergence theorem of Gauss for the conversion of the surface integral 

into the volume integral (see Appendix). 

The decrease under 4 by all possible interactions is, conformably to (2.2), given by 

 

 ( , ) ( , , , )t
V

r E r E t dVdEdφΣ Ω Ω∫  

The net result of all these contributions, whereby the first two must be counted positive and the 

last two negative, is  

 

 
0 4

( , , , ) ( , , , )

( , , ) ( , , , )

( , , , ) ( , ) ( , , , )

V V

s
V

t
V V

n r E t dVdEd S r E t dVdEd
t

r E E r E t dE d dVdEd

r E t dVdEd r E r E t dVdEd
π

φ

φ φ

∞

∂
Ω Ω = Ω Ω

∂

′ ′′ ′ ′ ′+ Σ → Ω →Ω Ω Ω Ω

− ∇⋅Ω Ω Ω− Σ Ω Ω

∫ ∫

∫ ∫ ∫

∫ ∫

 (2.6) 

 

This can be reduced to 

 

0 4

1 ( , , , ) ( , , , ) ( , , ) ( , , , )

( , , , ) ( , ) ( , , , ) 0

s
V

t

r E t S r E t r E E r E t dE d
v t

r E t r E r E t dV

π

φ φ

φ φ

∞∂ Ω⎛ ′ ′′ ′ ′ ′− Ω − Σ → Ω →Ω Ω Ω⎜ ∂⎝

⎞+Ω⋅∇ Ω +Σ Ω =⎟
⎠

∫ ∫ ∫
 (2.7) 

 

As this equation must hold for each volume V, the integrand of this volume integral must be 

zero, with which the neutron transport equation is obtained: 

 

0 4

1 ( , , , ) ( , , , ) ( , , ) ( , , , )

- ( , , , ) - ( , ) ( , , , )

s

t

r E t   S r E t   r E E r E t dE d
v t

 r E t   r E r E t
π

φ φ

φ φ

∞∂ Ω ′ ′ ′ ′ ′ ′= Ω + Σ → Ω →Ω Ω Ω
∂

Ω⋅∇ Ω ΩΣ

∫ ∫  (2.8) 

 

This is the linear integro-differential equation for de angle-dependent neutron flux φ(r,E,Ω,t), 

which even for very simple cases is difficult to solve analytically. 
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Boundary conditions and initial conditions go with this equation. If one considers a convex 

system placed in vacuum, so that no neutrons can enter the system from outside, then the 

boundary condition is 

 

 ( , , , ) 0 0s E t       for n   rφ Ω = ⋅Ω <  (2.9) 

 

for all points rs at the surface of the system considered. As initial condition, the neutron flux 

φ(r,E,Ω,t0) at a certain time t0 must be specified for all values of r in the system and all values of 

E and Ω. 

If fission occurs in the system, taking into account the energy distribution χ(E) of fission 

neutrons and isotropy during their ‘birth’, the source as a result of fissions, is given by  

 

 
0 4

1( , , , ) ( ) ( ) ( , ) ( , , , )
4 ffS r E t    E v E  r E r E t dE d

π

χ φ
π

∞

′ ′ ′ ′ ′ ′Ω = Ω ΩΣ∫ ∫  (2.10) 

 

By integration of the transport equation (2.8) over the direction Ω one could attempt to obtain 

an equation for the scalar flux φ(r,E,t). The flow term with Ω⋅∇φ can, however, not be expressed 

in φ(r,E,t). To this end, we have to introduce the vector quantity J(r,E,t) according to 

 

 
4

( , , ) ( , , , )J r E t    r E t d
π

φ= Ω Ω Ω∫  (2.11) 

 

This is called the net neutron flux density because n ⋅ J dS indicates the net number of neutrons 

that flows through a (fixed) surface dS per unit time. Here ‘net’ means the difference between 

the number that passes through dS to the side to which the normal vector points and the number 

that flows to the other side. 

 

Now integration of (2.8) over the direction Ω gives 

 

 

0

1 ( , , ) ( , , ) ( , ) ( , , )

( , , ) ( , ) ( , , )

t

s

  r E t   J r E t   r E r E t
v t

 S r E t   r E E r E t dE

φ φ

φ
∞

∂
+ ∇ ⋅ + Σ

∂

′ ′ ′= + →Σ∫
 (2.12) 

This balance equation is sometimes called the continuity equation. 
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2.2. The diffusion equation 

 

In order to arrive at a more convenient equation than (2.8), we look at the case of mono-

energetic neutrons. Then the energy-dependence disappears and (2.8) becomes 

 

 

4

1 ( , , ) ( , , ) ( ) ( , , )

( , , ) ( , ) ( , , )

t

s

  r t   r t    r r t
v t

 S r t   r r t d
π

φ φ φ

φ

∂
Ω +Ω⋅∇ Ω + Σ Ω

∂
′ ′ ′= Ω + Σ Ω →Ω Ω Ω∫

 (2.13) 

 

By integration over Ω we get the mono-energetic form of the continuity equation 

 

  
1 ( , ) ( , ) ( ) ( , ) ( , )a  r t   J r t    r r t  S r t  
v t

φ φ∂
+∇ ⋅ + Σ =

∂
  (2.14) 

 

in which use has been made of Σa = Σt − Σs. 

Subsequently, we introduce an approximation. We expand the angle-dependent flux φ(r,Ω,t) to 

the direction Ω in a series (compare with series expansion in Legendre polynomials; see 

Appendix) and truncate the series expansion after the second term: 

 

 
1( , , ) { ( , ) 3 ( , )}

4
r t    r t   J r tφ φ

π
Ω = + Ω⋅  (2.15) 

 

By integration over Ω for the left term of this equation one gets φ(r,t) and by first multiplying 

with Ω and subsequently integrating over Ω one obtains J(r,t), which by performing these 

operations appears to match the right term, so that the series expansion is correct (see Appendix 

for the integrations). 

 

Multiplication of (2.13) with Ω and integration over Ω now yields 

 

 
[ ]1 ( , ) - ( , , ) - ( ) ( , ) ( , , )

( , ) ( , , )

t

s

J r t    r t d    r J r t   S r t d
v t

 r r t d d

φ

φ

∂
= Ω Ω⋅∇ Ω Ω Σ + Ω Ω Ω

∂
′ ′ ′+ ΩΣ Ω →Ω Ω Ω Ω

∫ ∫

∫∫
 (2.16) 

 

By applying the series expansion (2.15), we can write (see also the Appendix) 
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[ ] [ ] [ ]

( )

1 3- ( , , ) - ( , ) - ( )
4 4
1 3- ( , ) -
3 4
1 3 1- ( , ) - - ( , )
3 4 3

 r t d     r t d    J d

   r t     J d

   r t    J  d     r t

φ φ
π π

φ
π

φ φ
π

Ω Ω⋅∇ Ω Ω = Ω Ω⋅∇ Ω Ω Ω⋅∇ Ω⋅ Ω

= ∇ Ω Ω⋅Ω∇⋅ Ω

= ∇ ∇⋅ Ω Ω = ∇

∫ ∫ ∫

∫

∫

  (2.17) 

 

for the first term in the right part of (2.16). 

If the source S is isotropic, which usually will be the case, the integral over the source strength 

does not contribute. The term that is determined by scattering of neutrons can, via a laborous 

derivation, be written as 

 

  0( , ) ( , , ) ( ) ( , )s sr r t d d   r J r tφ μ′ ′ ′ΩΣ Ω →Ω Ω Ω Ω = Σ∫∫   (2.18) 

 

in which 0μ is the average value of the cosine μ0 = Ω ⋅ Ω/ of the scattering angle. In Section 5.2 

an expression for 0μ will be derived. 

Equation (2.16) now becomes 

 

  
0

1 ( , ) 1- ( , ) - ( ) ( , ) ( ) ( , )
3
1- ( , ) - ( ) ( , )
3

t s

tr

J r t    r t   r J r t   r J r t
v t

  r t   r J r t

φ μ

φ

∂
= ∇ Σ + Σ

∂

= ∇ Σ
  (2.19) 

 

with the macroscopic transport cross section Σtr 

 

  0 0( ) ( ) - ( ) ( ) (1- ) ( )tr t s a s r    r    r    r    r μ μΣ = Σ Σ = Σ + Σ   (2.20) 

 

In the case of time-dependent problems, in practice the change of the neutron flow J appears to 

be negligible with respect to the other terms in (2.19), so that under the condition 

 

 
1

t
J  v

J t
∂

Σ
∂

 

 

It follows from (2.19) that 

 

  
1( , ) - ( , ) - ( ) ( , )

3 ( )tr

J r t     r t   D  r r t
 r 

φ φ= ∇ = ∇
Σ

  (2.21) 
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with which we have found a relationship between the neutron flow J and the scalar flux φ. At 

the same time the diffusion coefficient 

 

  
1( )

3 ( )tr

D  r   
 r 

=
Σ

  (2.22) 

 

has now been defined. Then equation (2.21) has a form that can also be found in particle-

diffusion problems. (N.B. The reactor-physical diffusion coefficient has the dimension of 

length. In other disciplines of physics it is customary to work with particle densities instead of 

with the flux density, so that in those disciplines a diffusion coefficient has the dimension area 

per time). 

Substitution of (2.21) into (2.14) yields the diffusion equation 

 

  
1 ( , ) ( ) ( , ) - ( ) ( , ) ( , )a

r t   D  r r t    r r t   S r t
v t

φ φ φ∂
=∇ ⋅ ∇ Σ +

∂
  (2.23) 

 

The approximation assumed in order to obtain this result, was that of the limited series 

expansion of the angle-dependent flux. The diffusion equation can, therefore, not be valid at 

places with strongly differing properties or in strongly absorbing media. It is apparent that the 

flux is not allowed to vary sharply over distances in the order of magnitude of a free path length 

λt = 1/Σt of the neutrons. This implies that the diffusion theory may show deviations from a 

more accurate solution of the transport equation in the proximity of external neutron sources and 

interfaces. 

 

As an application of the diffusion theory we consider the stationary case of a point source 

emitting Q neutrons/s in an infinite homogeneous medium. As a result of the spherical 

symmetry of the system, the diffusion equation gets the form 

 

  
2

2

2 - 0 0a
ddD              r

r drdr
φ φ φ⎧ ⎫
+ Σ = >⎨ ⎬

⎩ ⎭
  (2.24) 

 

or: 

 

  
2

2 2

1[ ] - [ ] 0d r   r   
dr L

φ φ =   (2.25) 

 

in which 
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  / aL  D= Σ   (2.26) 

 

is the diffusion length of the neutrons. 

The general solution is: 

 

  
- / /

( )
r L r Le er   A   B 
r r

φ = +   (2.27) 

 

Because that the neutron flux cannot become infinitely large for r → ∞, it follows that B = 0. 

The remaining constant A can be found by the boundary condition that the neutron flow from a 

very small sphere around the source must be equal to the source strength: 

 

  2

0
lim 4 ( )
r

    r J r   Qπ
→

=   (2.28) 

 

From this it follows that: 

 

  
- /

( )
4

r LQ er    
D r

φ
π

=   (2.29) 

 

On the ground of the physical consideration that all source neutrons must be absorbed in the 

infinitely large system, it must hold that 

 

  2

0 0

( ) ( )4a a r dV   r r dr  Qφ φ π
∞ ∞

Σ = Σ =∫ ∫   (2.30) 

 

Verify this with the found solution φ(r). 

 

The physical meaning of the diffusion length can be seen by calculation of the average distance 

covered by the neutrons, measured in a straight line, until they are absorbed: 

 

  2

0

1 ( )4 2ar   r  r r dr  L
Q

φ π
∞

= Σ =∫   (2.31) 

 

For thermal neutrons with an energy of 0.025 eV a few values of L are given in Table 2.1. 
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Table 2.1. Transport quantities for thermal neutrons of 0.025 eV in some materials 
 

Material Σa (cm-1) λa (cm) D (cm) L (cm) 
H2O 
D2O 
Be 
C 

0.022 
3.3   10-5 
1.24  10-3 
3.2   10-4 

45.5 
30300 
806 
3120 

0.142 
0.840 
0.416 
0.916 

2.54 
160     
18.3 
53.5 

 

The average quadratic distance until absorption is: 

 

  2 2 2

0

2
a

1 =  r  (r)4 r dr = 6Lr Q
φ π

∞

Σ∫   (2.32) 

 

Therefore, the diffusion length is a measure for the average distance between the place where 

neutrons are produced and where they are absorbed. This distance must not be confused with the 

average distance traveled by the neutrons. The latter is equal to the mean free path for 

absorption λa = 1/Σa and is much larger than the distance measured in a straight line, as a result 

of the ‘zigzag’ movement of the neutrons. 

 

2.3. Boundary condition 

 

In the diffusion theory. the boundary condition φ(rs, Ω)=0 for n⋅Ω < 0 cannot be used. A 

reasonable approximation is to demand that the inwardly directed neutron flow at the surface is 

zero. 

 

For a one-dimensional rectangular (plate-)geometry there is symmetry about the x-axis. The 

neutron flow vector J will thus always be directed along this axis. so that we can limit ourselves 

to its magnitude. 

 

The neutron flow in the positive x-direction J+ is 

 

 

0

0 0

1 2 1 2
2

0 0 0 0

( ) ( , )

1 3( ) ( )
4 4
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4 4 4 2

n
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π π
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φ μ μ ψ μ μ ψ φ
π π

+
⋅Ω>

⋅Ω> ⋅Ω>

= ⋅Ω Ω Ω

= ⋅Ω Ω + ⋅Ω Ω⋅ Ω

= + = +

∫

∫ ∫

∫ ∫ ∫ ∫

 (2.33) 

 

Similarly, the neutron flow in the negative x-direction (defined as positive quantity!) is 
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0

1 1( ) ( , ) ( ) - ( )
4 2n

J x   n x d     x    J xφ φ−
⋅Ω <

= ⋅Ω Ω Ω =∫  (2.34) 

 

If we set this equal to zero at an interface xS with vacuum, then with ( ) dJ x D
dx
φ

= −  we obtain 

 

  
( ) 2 22

3 3-
tr

tr

xd    D     d
dx

φ λφ= = = =
Σ

 (2.35) 

 

for the so-called extrapolation distance (see Figure 2.2) with λtr the so-called transport free path. 

 

 
Figure 2.2. Determination of the extrapolation distance 

 

For homogeneous, weakly absorbing media, an exact solution of the mono-energetic transport 

equation in this case yields 

 

 d = 0.7104 λtr  

 

so that the result of the diffusion theory is rather good. 

Therefore, as practical boundary condition one often uses 

d
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 φ (xS + 0.71 λtr) = 0 

 

At interfaces between two different media, on physical grounds the neutron flux and net neutron 

flow density must be continuous. In other words, φ and J are not allowed to show a ‘jump’. As J 

must be continuous, the flux gradient will show a jump if the diffusion coefficients in both 

media differ from each other. 

Finally, it can be remarked that according to (2.33) and (2.34) it holds that: 

 

 net flow density = J+(x) – J−(x) = J(x) (2.36) 

 

 total flow density = J+(x) + J−(x) = 1/2 φ (x) (2.37) 

 

This latter quantity gives the number of neutrons flowing through a surface per unit time 

irrespective the side the neutrons come from. The scalar flux is sometimes confused with the 

total flux density, but equation (2.37) shows that these quantities differ by a factor two in the 

case of isotropic or linearly anisotropic fluxes. 
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Chapter 3 

Reactor analysis with diffusion theory 

 
In this chapter we will inspect how the neutron distribution is in a nuclear reactor and which 

conclusions we can draw about sustaining the chain reaction in the reactor. We will confine 

ourselves to mono-energetic neutrons or a one-group approximation, whereby one can consider 

all neutrons to belong to one (energy) group. 

 

3.1. One-group diffusion theory 

 

The one-group diffusion equation (2.23) with a source as a result of fissions 

 

 ( , ) ( ) ( , )fS r t v r r tφ= Σ  (3.1) 

reads 

 
1(  ) ( , )  ( ) ( , )  ( ) ( , )f aD r r t v r r t r r t
v t

φφ φ φ ∂
∇ ⋅ ∇ + Σ −Σ =

∂
 (3.2) 

 

with associated boundary and initial conditions. 

The time-dependent behaviour of a neutron population in a multiplying system (i.e. a system in 

which fissions take place) will depend on the ratio between the production term on the one hand 

and the absorption and leakage terms on the other hand in the left hand side of (3.2). If the 

production term predominates, the neutron population will increase, and in the reversed case it 

will decrease. When production and losses exactly balance, the neutron flux will be constant in 

time; in that case one speaks of a critical reactor. Only then one may set the time derivative in 

(3.2) equal to zero. 

Also for a non-critical reactor one wants to have a measure for the production, absorption and 

leakage of neutrons from the reactor being out of balance, without having to solve a time-

dependent diffusion equation, because the exact time-dependent behaviour is the result instead 

of the cause for this balance. One can obtain a steady-state equation artificially by adjusting the 

source term in (3.2). Physically this means that one makes the system seemingly critical by a 

(fictive) change in neutron production per fission. Mathematically this yields an eigenvalue 

equation with eigenvalue k: 
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 (  ) (  ) +  (  ) (  ) - (  ) (  ) = 0f aD r r r r r r
k
νφ φ φ∇ ⋅ ∇ Σ Σ  (3.3) 

 

The eigenvalue has been placed in the denominator of the production term, because by that it 

gets an important physical meaning, which can be seen as follows. Integration over the volume 

of the reactor gives 

 

 
 (  ) (  )

 = 
-  (  ) (  )  +  (  ) (  )

f
V

a
V V

r r dV
k

D r r dV r r dV

ν φ

φ φ

Σ

∇⋅ ∇ Σ

∫

∫ ∫
 (3.4) 

 

With the aid of the divergence theorem of Gauss, the first integral in the denominator  can be 

transformed into: 

 

 
  

 (  ) (  )  = -  (  ) (  )  =  (  ) 
V S S

- D r r dV D r n r dS n J r dSφ φ∇ ⋅ ∇ ⋅∇ ⋅∫ ∫ ∫  (3.5) 

 

in which S is the outer surface of the reactor and n the local unit normal vector to the surface. 

The integral thus equals the total neutron leakage from the reactor. Equation (3.4) now has a 

simple physical meaning; in words: 

 

 
total neutron production rate by fissionsk

total neutron loss rate by leakage and absorption
=  (3.6) 

 

This factor, which is important in reactor physics, is called the effective multiplication factor 

keff. 

The physical events in a reactor can be considered as a coming and going of successive neutron 

generations, whereby the fission processes are considered as moments of birth. The 

multiplication factor keff then gives the ratio of the neutron population size in two successive 

generations. if the flux is spatially distributed according to the eigenvalue distribution that is the 

solution of (3.3). 

In order to arrive at an analytically solvable equation, we will assume that the reactor is 

homogeneous, i.e. that the macroscopic cross sections are space independent. This is the case if 

the materials are homogeneously mixed or in the trivial case that only one material is present. In 

general, reactors will have a heterogeneous structure, i.e. contain regions of different 

composition (nuclear fuel, construction material, moderator, coolant, control rods, etc.). If the 

dimensions of the regions of different compositions are small in comparison with the mean free 
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path of the neutrons, the reactor can neutron-physically be considered approximately 

homogeneous. 

For homogeneous systems (3.3) can be written as: 

 

 2 2( ) ( ) 0r B rφ φ∇ + =   (3.7) 

with 

 2  /  - 
 = f ak

B D
νΣ Σ

 (3.8) 

 

One can thus see this quantity, defined as the eigenvalue of (3.7), as a type of eigenvalue 

different from the multiplication factor k, with which a direct correlation exists according to 

(3.8). 

  
 

Figure 3.1. Infinite-plate reactor 
 

For the geometrically most simple case, a slab reactor with extrapolated width a and infinite in 

both other directions (Figure 3.1), the equation becomes: 

 

 
2

2
2
 + ( ) = 0d B x

dx
φ φ  (3.9) 

 

The solution satisfying the symmetry condition with respect to x = 0 is: 

 

 ( ) cosx A Bxφ =  (3.10) 

 

In order to satisfy the boundary condition (φ = 0 at the extrapolated edge x = ± a/2), the 

following must hold 

 

0,71 λtr 
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2

2 = B a
π⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3.11) 

We see that the eigenvalue B2 is exclusively dependent on the geometry (shape + dimensions) 

of the reactor. According to (3.7): 

 

 
2

2 ( r ) = -B ( r )
φ
φ
∇  (3.12) 

 

so B2 indicates the curvature or buckling of the flux in the reactor. Therefore, B2 is also called 

the geometric buckling factor Bg
2. Table 3.1 gives the solution of equation (3.7) for a number of 

geometries; the associated flux distributions are shown in Figure 3.2. The eigenfunctions have 

been normalized to the value 1 at the origin. Notice that the coefficient A from (3.10) is 

undetermined, because the solution of (3.7) or (3.9) can be multiplied by an arbitrary factor. 

 

Table 3.1. Buckling factors for various geometries 
(the dimensions are extrapolated dimensions) 

 
Geometry  B2  φ(r) (minimum) 

volume at 
given B2 

infinite plate 
(thickness a) 
 
 

rectangular 
parallel-epipedum 
(edges a,b,c) 
 
 
sphere 
(radius R) 
 
 

cylinder 

2

a
π⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
2 2 2

 +   +  
a b c
π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
2

R
π⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
2 22.405 + 

H R
π⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

cos x
a

π  

 

 

cos  cos  cos x y z
a b c

π π π  

sin r
R

r
R

π

π
 

    

0 2.405  cos r zJ
R H

π⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

– 

 

 

3

161
B

 

 

3

130
B

 

 

3

148
B

 

 

 

 

With the aid of (3.7) for a homogeneous reactor it can be derived from (3.4) that: 

 

 2 2 2 2

1       
  1  / 1  

f f
eff

a g a g a g

k
k DB DB B L

ν ν
∞

Σ Σ
= = =
Σ + Σ + Σ +

 (3.13) 
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 Figure 3.2. Flux distribution in systems of three different geometries 

 

 

in which 

 

   f

a

k ν∞

Σ
=

Σ
 (3.14) 

 

is the multiplication factor of an infinitely large, so leakage free, reactor and  

  

  = / aL D Σ  (3.15) 

 

is the diffusion length of the neutrons. The result (3.13) could also have been derived directly 

from (3.8). 

The difference between k∞ and keff is the leakage of neutrons from the reactor, so that according 

to (3.13) 

 

 1 2 2

1 = 
1 + n

g

P
B L

 (3.16) 

 

is the non-leakage probability or retention factor, i.e. the probability that neutrons produced 

during fission do not leak from the reactor but are absorbed in it. 
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In addition to the geometric buckling factor Bg
2, one also has defined the material buckling 

factor Bm
2, which exclusively depends on the material composition of the reactor core: 

 

 2
2

 -  - 1 =  = f a
m

kB
D L

ν ∞Σ Σ
 (3.17) 

 

From (3.3) one sees that only for a critical reactor (or a subcritical reactor with source, but for 

positions outside the source region) it holds that 

 

 22 (  )  (  )  0     1m r B r kφ φ+ = =Δ  (3.18) 

 

One also sees that for a critical reactor it must hold that 

 

 2 2  g mB B=  (3.19) 

 

After calculation of k∞ and L2 one can thus simply calculate the critical dimensions for a given 

shape of the reactor core. 

 

For illustration of the foregoing we will perform some calculations on a sphere of highly 

enriched (circa 93%) uranium. The atomic number densities for this case are: 

 

 N(235U) = 0.04545⋅1024 cm-3 

 N(238U) = 0.00256⋅1024 cm-3 

 

As the fission neutrons in the uranium only lose a little energy as a result of collisions, this will 

be a so-called fast reactor, in which also fission by 238U occurs. The parameters for the one-

group calculation are given in Table 3.2. 

 

 Table 3.2. Parameters for one-group calculation 
 

 Nuclide  v  σf  (b)  σc (b)  σtr (b) 

 235U 
 238U 

 2.6 
 2.6 

 1.34 
  0.215 

 0.159 
 0.112 

 6.8 
 6.9 

 

 

The multiplication factor k∞ amounts to: 
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 5 5 5 8 8 8

5 5 8 8

 + 
 =  = 2.317

 + 
f f

a a

N v N v
k N N

σ σ
σ σ∞   

 

while the diffusion length is: 

 

 
1 = /  =  = 3.846 cm

3a
tr a

L D Σ
Σ Σ

  

 

so that for the material buckling factor we find: 

 

 2 -2
2

-1 =  = 0.0890 cmm
kB

L
∞   

 

For a critical system this factor must be equal to the geometric buckling factor, as indicated in 

Table 3.1. The extrapolated radius of a critical sphere is thus: 

 

  =  =  = 10.53 cmextr
g m

R
B B
π π

  

 

Then the real radius, making use of the extrapolation distance 0.71λtr amounts to: 

 

 0.71 8.361crit extr trR R cmλ= − =   

 

which for a density of metallic uranium of 18.75 g/cm3 corresponds with a critical mass of 45.8 

kg. 

The measured critical mass of such a system amounts to 48.8 kg, so that our result is rather 

accurate. As the one-group model used here is a rough approximation, this accuracy is owing to 

the fact that the parameters given in Table 3.2 have been calculated accurately with the aid of a 

multi-group model, which we will go further into later. 

 

There exist more solutions than (3.11) of the eigenvalue problem (3.9) that satisfy the boundary 

conditions, viz. 

 

 
2

2 =           = 1,3,5,...n
nB n
a
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 (3.20) 

 

with associated eigenfunctions 
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 ( ) =  cos           = 1,3,5,...nn
xx A n n
a

πφ  (3.21) 

 

A series of eigenvalues ki(i=1.2.…) corresponds with these solutions. The eigenfunction φ1 is 

called the fundamental mode and the associated eigenvalue k1 = keff. Further, Bg
2 = B1

2, so that 

we can define the geometric buckling factor more precisely as the smallest eigenvalue of (3.7) 

and keff as the largest eigenvalue of (3.3). As the higher eigenfunctions for certain values of x 

are negative, these flux shapes do not have a meaning of their own. As the eigenfunctions are 

mutually orthogonal, i.e. 

 

 ( ) ( )  = 0      n m x x dx for m nφ φ ≠∫  (3.22) 

 

the flux in the reactor as a result of an arbitrary source distribution can be written as a series of 

these eigenfunctions. Also in transition phenomena in time-dependent processes the higher 

eigenfunctions and eigenvalues play a part (due to the smaller values of the corresponding 

multiplication factor they die out fast and they will not be further discussed here). 

 

3.2. Multi-zone systems 

 

A reactor core may consist of various zones of different composition. The consequence of this is 

that the material buckling factor, and therefore, the flux curvature, will vary per zone.  

 
Figure 3.3. Flux as a function of x in a two-zone reactor;  

material buckling factors as in Table 3.3 
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Figure 3.3 illustrates this for a slab reactor with two zones. From this figure one sees that by 

variation of Bm
2 flux flattening can be obtained with respect to a single-zone system. To this 

end, the Bm
2 in the centre of the core is made lower (for example by a lower degree of 

enrichment and by that a lower k∞) than in the exterior zones. Such flattening gives a more 

uniform power density distribution, by which a higher total power can be supplied without 

exceeding certain temperature limits. 

 

Table 3.3. Material buckling factors for a two-zone system 
 

 2
1mB  2

2mB  

 

 a 

 

 

 b 

 

 

 c 

 

 

 d 

 

 e 

 

2

9.870
b

 

    

2

14.40
b

 

 

2

5.19
b

 

 

2

4.00- 
b

 

 

2

17.18
b

 

 

2

2

9.870  
b b
π⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

 
2

2

0.3950.2    
b b
π⎛ ⎞ =⎜ ⎟

⎝ ⎠
 

 
2

2

30.231.75    
b b
π⎛ ⎞ =⎜ ⎟

⎝ ⎠
 

 

2

44.83
b

 

 

2

16.00- 
b

 

 

 

 

For the determination of the flux distribution in both zones of a critical reactor, the diffusion 

equations in zone 1 and zone 2 need to be solved: 

 

 2
1 1 11 1 1 -     0          | |

2a f
axD νφ φ φΣ + Σ = ≤∇  (3.23) 

 

 2
2 2 22 2 2 -     0          | |

2 2a f
a bD xνφ φ φΣ + Σ = ≤ ≤∇  (3.24) 

 

with a the real width of zone 1 and b the outer dimension of the reactor including the 

extrapolation distance (see Figure 3.4). 
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Figure 3.4. Geometry for plate-shaped two-zone reactor 

. 

The boundary and interface conditions are  

 1(0)
 = 0     

d
dx
φ

 due to symmetry (3.25) 

  

 2 =    
2 21
a a  φ φ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 due to continuity of the flux  (3.26) 

 

 1 2    =     
2 2
a a

J J
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 due to continuity of the neutron current (3.27) 

 

 

   = 0    
22
b  φ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 boundary condition for vacuum edge (3.28) 

 

The diffusion equations for zones 1 and 2, with the material buckling factors 2
1mB and 

2
2mB according to (3.17), can also be written as 

 12
1 1 1( ) ( )  0mx B xφ φ+ =∇  (3.29) 

 

 2 2
22 2( ) ( )  0mx xBφ φ+ =∇     

Zone 2 Zone 1 Zone 2

a 
x  

2

a
−  

0

2

a

2

b
2

b
−  

extrapolated 

boundary 
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with solutions 

  

 1 1 1 11( )   cos    sin m mx A B x C B xφ = +  (3.31) 

 

 2 2 2 22( )   cos    sin m mx A B x C B xφ = +  (3.32) 

 

As the flux in a reactor without external source can only be determined to within an arbitrary 

factor, we choose A1 = 1. Because of the symmetry condition C1 = 0, so that 

 

 11( )  cos mx B xφ =  (3.33) 

 

From boundary condition (3.28), after some rewriting it follows that φ2 can be written as 

 

 2 22( )   sin   - 
2m
bx C B xφ ⎛ ⎞′= ⎜ ⎟

⎝ ⎠
 (3.34) 

 

From condition (3.26) 2'C  can be determined: 

 

 
1

2

2

cos  
2) =  sin  
- 2sin  
2

m

m2

m

aB b(x B x
b aB

φ ⎛ ⎞−⎜ ⎟⎛ ⎞ ⎝ ⎠
⎜ ⎟
⎝ ⎠

 (3.35) 

 

With condition (3.27) no other coefficient can be determined (even A1 could not have been 

determined with this condition). Application of this condition and some manipulation leads to 

 

 1 1 1 2 2 2 tan  =  cotg  
2 2m m m m
a b aD B B D B B −⎛ ⎞

⎜ ⎟
⎝ ⎠

 (3.36) 

 

This is the condition that must be satisfied for a critical reactor, in which dimensions of the 

reactor are coupled to the material properties. For the two-zone reactor, this critical equation 

replaces condition (3.19) for the single-zone reactor. For the situations depicted in Figure 3.3 it 

has been assumed that b = 2a. Situation a, with 2
1mB = 2

2mB and D1 = D2, is the transition into a 

single-zone reactor. For the remaining situations D1 = 0.75 D2 has been chosen, so that the 
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derivative of the flux is discontinuous at the interface. For situations b and c, 2
2mB was chosen 

and 2
1mB was calculated from (3.36). 

For situation d, 2
2mB was chosen negative. This case occurs if k∞ < 1. Notice that the flux in zone 

1 then is concave. This can also be described mathematically with (3.35) by setting 1 1'm mB iB=  

and applying the relations ( ) ( )sin sinhiy i y= and ( ) ( )cos coshiy y= . The critical equation 

then becomes 

 

 1 1 1 2 2 2 tanh   =  cotg  
2 2m m m m
a b a-D B B D B B −⎛ ⎞′ ′ ⎜ ⎟

⎝ ⎠
 (3.37) 

 

Finally, in situation e the reactor core in zone 1 is surrounded by a non-multiplying medium, a 

so-called reflector. For this case, according to one-group diffusion theory the following holds: 

 

 2 2
2 22

2

1 = -  = - mB
L

κ  (3.38) 

 

with κ2 = 1/L2, by which the flux in zone 2 is concave. By placing such a neutron reflector 

around the core, one decreases the critical mass. The critical equation becomes 

 

 1 1 1 2 2 2 2 2 2 tan   =  coth   =  coth 
2 2m m
a b aD B B D D Tκ κ κ κ−⎛ ⎞

⎜ ⎟
⎝ ⎠

 (3.39) 

 

with T the thickness of the reflector. In order to give a measure for the savings as a result of the 

use of a reflector, one introduces the concept of reflector savings δ : 

 

 0
1 -  
2

1 = a a
2

δ  (3.40) 

 

in which a0 is the extrapolated dimension of a critical slab reactor for a non-reflected core, so 

that 

 

 
1

1 -  
2m

 = a
2B
πδ  (3.41) 

 

Now 
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 1 1
1 1 1 2

2 2

1 1tan   = tan  -   = cotg   =  tanh 
2 2 2

m
m m m

D BB B a B a T
D

πδ κ
κ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3.42) 

 

so that 

 

 1 1
2

1 2 2

 arctan   tanh  m

m

D B1 = T
B D

δ κ
κ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3.43) 

 

With this equation one can calculate the reflector savings as a function of the reflector thickness 

T. Figure 3.5 shows the relation between δ and T. 

 
Figure 3.5. Reflector savings as a function of reflector thickness 

 

 

One sees that the reflector savings has a finite value for κ2T→ ∞ equal to 

 

 1 1

1 2 2

 arctan m

m

D B1 = 
B D

δ
κ∞  (3.44) 

 

Physically this can be understood as follows: when the reflector has a thickness of a few 

diffusion lengths, the probability that neutrons that have come into the outer shell of the 

reflector are scattered back to the core is very small, so that an even thicker reflector hardly 

yields extra savings. For a good reflector one will select material with a large scattering cross 

section and a small absorption cross section. 
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3.3. Perturbation theory 

 

The purpose of perturbation theory is to calculate the influence of small changes in the 

macroscopic cross sections on the multiplication factor of a reactor. Our starting point is a 

critical reactor, for which holds that: 

 

 (  ) (  )   (  ) (   ) - (   ) (   )  0f aD r r r r r rφ ν φ φ∇ ⋅ ∇ + Σ Σ =  (3.45) 

 

in which the macroscopic cross sections may be space dependent. A change of the macroscopic 

cross sections gives a diffusion equation for a non-critical reactor with multiplication factor k: 

 

 (  )   (  )  - (  )   0f f a a D D
k
νδ φ δ φ δ φ′ ′ ′∇ ⋅ + ∇ + Σ + Σ Σ + Σ =  (3.46) 

 

in which the indication of spatial dependence has been omitted for the sake of brevity. We 

multiply (3.45) by 'φ and (3.46) byφ , integrate over the reactor volume and subtract the 

resulting equations from each other, and then calculate the reactivity ρ : 

 

 
{ }(  )  -     - -1  

(  )
f a

f f

D D D dVk  
k dV

φ δ φ φ φ νδ φφ δ φφ
ρ

ν δ φφ

′ ′ ′ ′∇ + ∇ ∇⋅ ∇ + Σ Σ
= =

′Σ + Σ
∫

∫
 (3.47) 

 

The first two terms in the numerator of the right hand side of (3.47) can be reduced to 

 

 

+ )  V -   =

( + )   - ( + )    -

  +   =

( + )  -  -  =

- 

(D D d D dV

D D dV D D dV

D dV D dV

n D D dS n D dS D dV

D dV

φ δ φ φ φ

δ φ φ δ φ φ

φ φ φ φ

δ φ φ φ φ δ φ φ

δ φ φ

′ ′∇ ⋅ ∇ ∇⋅ ∇

′ ′∇ ⋅ ∇ ∇ ⋅∇

′ ′∇ ⋅ ∇ ∇ ⋅∇

′ ′ ′⋅ ∇ ⋅ ∇ ∇ ⋅∇

′∇ ⋅∇

∫ ∫
∫ ∫
∫ ∫
∫ ∫ ∫
∫

 

  

because of the boundary condition ' 0φ φ= =  at the boundary of the system, by which the 

surface integrals do not contribute. The reactivity can now be written as 
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{ }

( )
-     - 

 
f a

f f

D dV
  

dV

δ φ φ νδ φφ δ φφ
ρ

ν δ φφ

′ ′ ′∇ ⋅∇ + Σ Σ
=

′Σ + Σ
∫

∫
 (3.48) 

 

As a first-order approximation, for small disturbances one may assume 'φ φ= , while δ Σf in the 

denominator then also can be neglected with respect to Σf (notice that in the numerator only 

perturbation terms are present so that δ Σf cannot be neglected there), with which the reactivity 

according to first-order perturbation theory becomes 

 

 
( ) ( ){ }2 2

2

-    - 

 
f a

f

D dV
  

dV

δ φ νδ δ φ
ρ

ν φ

∇ + Σ Σ
=

Σ
∫

∫
 (3.49) 

 

From (3.49) we see that the reactivity change by a small change in Σa or Σf is proportional to the 

square of the flux at the position of the change; a small change in D is weighted with (∇φ)2. 

For a cosine-shaped flux we obtain the clock-shaped curves in Figure 3.6 as the importance 

function for perturbations. As is to be expected physically, changes in Σa have the largest effect 

in the core centre, whereas changes in the diffusion coefficient have a large influence at the 

edge of the core. 
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Figure 3.6. Space-dependent importance function in a reactor 
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Chapter 4 

Time-dependent behaviour of reactors 

4.1. Introduction 

 

In the preceding chapter, reactors have been analysed by introducing the multiplication factor as 

eigenvalue and with that forcing a steady-state equation. In this chapter, amongst other things it 

will be investigated how the neutron flux changes if keff is not equal to one. The value of keff can 

be changed, for example, by moving control rods into or out of the reactor core. When starting 

up a reactor, one uses this for increasing the flux and with that the power. Hereby we speak of 

reactor kinetics in the ‘seconds domain’. When the reactor generates sufficient power, the 

temperature in the reactor will change as a function of the power. The effects thereof will be 

treated qualitatively. During operation of the reactor the composition of the nuclear fuel will 

gradually change as a result of: 

1. consumption of nuclear fuel (burnup) 

2. formation of new nuclear fuel by conversion of fertile material 

3. formation of fission products 

If one wants to maintain a stationary energy production, it will be necessary to compensate for 

the influence of these effects by, for example, adjusting the control rods. The first two effects 

take place at a time scale of months/years. The influence of the fission products, which lead to 

extra absorption of neutrons, can be split into: 

1. the effects of xenon and samarium poisoning, which manifest themselves on a time 

scale of hours/days 

2. the gradual build-up of long-lived or stable fission products on a time scale of 

months/years. 

 

4.2. Simple description of reactor kinetics 

 

We can obtain a simplified solution of the time-dependent diffusion equation (3.2) by assuming 

that the reactor has a homogeneous composition and that the spatial and time dependence can be 

separated: 

 

 ( , ) ( ) ( )r t t rφ φ ψ=  (4.1) 

 



 52

By substitution into (3.2), the space dependent part ψ(r) satisfies the eigenvalue equation (3.7) 

 

 22 (  )  (  )  0g r B rψ ψ+ =∇  (4.2) 

 

For the time-dependent part then follows that 

 

 21    (  ) - (  ) - (  )f a g
d t t DB t

v dt
φ ν φ φ φ= Σ Σ  (4.3) 

 

We now define the neutron lifetime as the average time between the appearance of the free 

neutron and its disappearance by absorption or leakage. For an infinitely large, so leakage-free, 

reactor the lifetime ∞ becomes the ratio of the absorption mean free path and the velocity: 

 

 
1  a

a

  
v v
λ

∞ = =
Σ

 (4.4) 

 

For a reactor of finite dimensions leakage will occur, so that the lifetime ∞ must be multiplied 

by the non-leakage probability Pnl, given by (3.16): 

 

 
( )2 2

1  
1nl

a g

  P
v B L∞= =
Σ +

 (4.5) 

 

We can now rewrite the time-dependent equation (4.3) as 

 

 
( ){ }

( )( )

2 2

2 2

  /  - 1 (  ) 

-1
 1 -1 (  )  (  )

a f a g

eff
a g eff

d v B L t
dt

k
v B L k t t

φ ν φ

φ φ

= Σ Σ Σ +

= Σ + =
 (4.6) 

 

One obtains an even simpler derivation of this equation by introducing the concept of neutron 

generation. A neutron generation ‘lives’ a lifetime , after which it disappears and produces a 

new generation. One can now interpret keff as the ratio of the number of neutrons in two 

successive generations. If at a certain moment N neutrons are present, then in the next 

generation there will be keff⋅N neutrons, while all neutrons of the previous generation have 

disappeared. As this happens in lifetime , the following holds for the net change of the number 

of neutrons per unit time: 
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 -  -1

     (  )eff effk N N kdN N t
dt

= =  (4.7) 

 

As the flux is proportional to the number of neutrons, this equation corresponds with (4.6). Its 

solution is 

 

 0

-1
(  )   exp   effk

N t N t
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 (4.8) 

 

with N0 the number of neutrons at t = 0. For keff = 1 one obtains a stationary number of neutrons. 

If keff ≠ 1 the number of neutrons will increase or decrease exponentially with time. 

 

A representative value for the lifetime in a thermal reactor is 10-4 to 10-3 s. In a fast reactor, the 

lifetime of neutrons will be considerably shorter, because although Σa is smaller, the average 

velocity v is much larger than in a thermal reactor. In this type of reactor will amount to 10-7 to 

10-6 s. One can easily verify that in a thermal reactor with keff = 1.001 and equal to 10-4 s, per 

second a power increase by a factor e10 = 22000 would occur. A reactor with such a response to 

a small change in keff would be difficult to control, but fortunately nature comes to aid. In the 

major part of the fissions the fission neutrons will directly (promptly) be emitted. However, 

almost 1 % only is released during the decay of certain fission products. These are so-called 

delayed neutrons. An example of this is given in Figure 4.1. 

 

Figure 4.1. Decay scheme with emission of a delayed neutron 
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As the delayed neutrons will immediately be emitted by the highly excited nuclei, they will be 

released with a half-life that is equal to the half-life for β decay of the so-called precursors or 

parent nuclei (87Br in the example of Figure 4.1). On the whole, there are  some tens of 

precursors of delayed neutrons among the fission products. Their half-lifes can be grouped into 

six so-called delayed-neutron groups, each with a characteristic half-life T1/2 and yield βi, which 

denotes the fraction of the total neutron production per fission in which a precursor from the 

group concerned is formed. 

 

 Table 4.1. Data of delayed neutrons (yields are for thermal fission) 
 

Group i  T1/2 (s)  λ (s-1)  βi (%) 

    233U  235U  239Pu 

    1 
    2 
    3 
    4 
    5 
    6 

   55 
   22 
    6.0 
    2.2 
    0.50 
    0.18 

    0.0127 
    0.0317 
    0.115 
    0.311 
    1.40 
    3.87 

0.0255 
0.0811 
0.0672 
0.0938 
0.0216 
0.0068 

0.0260 
0.1459 
0.1288 
0.2788 
0.0877 
0.0178 

0.0081 
0.0594 
0.0458 
0.0695 
0.0218 
0.0074 

   β 0.296 0.685 0.212 

  
i

i i

    = / βλ β
λΣ

 
0.0839 

 
0.0784 

 
0.0652 s-1 

 

The total fraction of delayed neutrons β = Σ βi varies from nuclide to nuclide (Table 4.1) and is 

also somewhat dependent on the energy of the neutrons causing the fissions. The average 

energy of the delayed neutrons amounts to about 0.5 MeV and is thus considerably lower than 

that of the prompt neutrons. For not too large values of keff these delayed neutrons cause the 

‘effective lifetime’ of the neutrons to be considerably larger than their real lifetime as a result of 

the ‘birth delay’ of part of the neutrons. A first approximation for the effective lifetime is 

 

      eff ii
i

tβ= +∑  (4.9) 

 

in which βi = fraction of delayed neutrons of group i 

  ti = average time between fission and release of the neutrons of group i,  

   for which thus holds that: 
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 (4.10) 

From Table 4.1 it follows that 0.1si i
i

tβ ≈∑ for 235U; as  is much smaller, eff is completely 

determined by the delayed neutrons. Using the same calculation example as before, now for the 

reactor period (i.e. the time in which the reactor power increases by a factor e) it thus holds that 

T = 10-1/10-3 = 100 s. This makes the reactor much more attractive for the control technician. In 

general, reactors are started up with a period of 30 s or more. When the period becomes much 

smaller (by making keff larger) the power increases too fast to guarantee a reliable start-up from 

a technical and safety point of view. 

 

4.3. Reactor kinetics with delayed neutrons 

 

For a more accurate description of the time-dependent behaviour of a reactor, the production of 

neutrons by decay of precursors must be included in the description. For the neutron balance 

equation this means that in (3.2) the production term vΣfφ must be replaced by the production of 

prompt neutrons, which is a factor 1−β smaller, while the neutrons released by decay of 

precursors must be added. If the concentration of precursors of group i of delayed neutrons is 

denoted by Ci, the equation becomes 

 

 
1   ( ,  ) - ( ,  )  (1- ) ( ,  )    ( ,  )  i ia f

i

D r t r t r t r t SCv t
φ φ φ β ν φ λ
∂

=∇ ⋅ ∇ Σ + Σ + +
∂ ∑  (4.11) 

 

The balance equation for the precursors is determined by the formation of these nuclei by 

fission and by their decay 

 

    ( ,  ) - ( ,  )     1, ..., 6i
f i ii

C r t C r t i
t

ν φ λβ
∂

= Σ =
∂

 (4.12) 

 

Again with the assumption of separation of spatial and time dependence, also for the precursor 

concentration, we can reduce (4.11) to: 

 

 
(1- ) -1 1 =   (  ) +  ( ,  ) + i i

i

1 d k t C r t S
v dt v

φ β φ λ∑  (4.13) 
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By transition to the neutron density /n vφ=  and introduction of the neutron generation time Λ 

 

 
1  

f

  
k vν

Λ = =
Σ

 (4.14) 

 

and using the reactivity ρ = (k-1)/k we obtain the kinetic equations 

 

 
-   (  )   (  )  i i

i

dn n t C t S
dt

ρ β λ= + +
Λ ∑  (4.15) 

 

    ( ) - ( )     1, ..., 6i i
i i

dC n t C t i
dt

β λ= =
Λ

 (4.16) 

 

We now consider a reactor without external source. The system of coupled first-order 

differential equations can be solved with Laplace transformation or by trying the solution 

 

 0( )  tn t n eω=  (4.17) 

 

 0( )  t
i iC t C eω=  (4.18) 

 

with ω to be determined. Substitution in (4.16) gives the relation between the coefficients of the 

neutron density and the precursors 

 

  0 0
1    i

i
i

nC
β

ω λ
=
Λ +

 (4.19) 

 

Substitution in (4.15) subsequently yields an equation for ω, which after some manipulation can 

be written as 

 

  i

i i

    
ωβρ ω
ω λ

= Λ +
+∑  (4.20) 

 

This equation is known as the inhour equation, because ω was originally determined in inverse 

hours. For a given value of the reactivity ρ the associated values of ω are determined with this 

equation. Figure 4.2 shows the relation between ρ and ω graphically. From this figure it is seen 

that for a given value of ρ seven solutions exist for ω. 
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Figure 4.2. Graphical representation of the inhour equation  

 

 

The fact that there exists more than one solution for ω means that the neutron density as solution 

of the kinetic equations can be written as 

 

 0 61
0 1 6( )     ...  t ttn t A e A e A eω ωω= + + +  (4.21) 

 

and an analogous solution for the precursor concentration. The coefficients Ai are determined by 

the initial conditions. 

Of the seven roots for ω, six are always negative; these thus describe a transition phenomenon. 

The root with the algebraically largest value (ω0) is positive for ρ > 0 and negative for ρ < 0; 

this root thus describes the reactor response, which is lasting after the transition phenomena 

have died out. The reactor power then increases or decreases with the so-called stable reactor 

period, for which holds that 

 

 
0

1  T
ω

=  (4.22) 
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The reactivity of a reactor is sometimes expressed in dollars, whereby ( )$ /ρ ρ β= . When the 

reactivity is larger than one dollar (the absolute value of which depends on the nuclear fuel 

applied!), the prompt neutrons alone already cause a supercritical state; the reactor then is 

prompt-supercritical and the stable reactor period is very short; a situation that must be avoided. 

 

 
Figure 4.3. Stable reactor period as a function of the reactivity for a number of values of the 

generation time 
 

Figure 4.3 depicts the stable reactor period as a function of ρ for a number of values of the 

generation time Λ. One sees that for reactivity values below $ 0.5 the stable period is 

independent of the generation time. 

In order to obtain further insight in the reactor-kinetic behaviour, one can simplify the kinetic 

equations by assuming that all delayed neutrons belong to one group with a suitably chosen 

half-life λ. The inhour equation (4.20) then becomes: 

 

     ω βρ ω
ω λ

= Λ +
+

 (4.23) 

 

in which λ is chosen in such a way that for small values of ω (i.e. ⏐ω⏐ < λi for all i) the solution 

of (4.23) approximates the solution of (4.20). For small ω (4.20) becomes: 

 

  i

i i

     βρ ω ω
λ

≈ Λ + ∑  (4.24) 
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from which upon comparison with (4.23) for small ω it follows that: 

  

 
1 1  i

i i

   β
λ β λ
= ∑  (4.25) 

 

The values of λ calculated in this way are also given in Table 4.1 for a number of nuclear fuels. 

The inhour equation now becomes a second-order equation 

 

 2 ( - ) - 0            ω β ρ λ ω ρλΛ + + Λ =  (4.26) 

 

Except in the case that ρ ≈ β, the term λΛ can be neglected with respect to β -ρ. If we limit 

ourselves to small values of ρ, then we can expect a small and a large (negative) value of ω as 

solutions, which can be approximated by 

 

 0 -
   ρ λω

β ρ
≈  (4.27) 

 

 1
--   β ρω ≈
Λ

 (4.28) 

 

so that the general solution of the kinetic equations becomes: 

 

 
 -
-

0 1(  )     
t t

n t A e A e
ρ λ β ρ
β ρ −

Λ= +  (4.29) 

 

For a critical reactor in which at t=0 a step-shaped reactivity insertion takes place, one must set 

the following initial conditions: 

 

 0 0 1(0)      n n A A= = +  (4.30) 

 

 
 

0
0

    lim
t

dn n
dt

ρ
↓

=
Λ

 (4.31) 

 

This latter condition follows from (4.15), in which n(t) and C(t) must be continuous at t=0. The 

steady-state value of Ci for t<0 follows from (4.16) by equating the derivative to zero, so that 
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 0 0   
 

i
i

i

C nβ
λ

=
Λ

 (4.32) 

 

Applying the same approximation leading to (4.27) and (4.28), it follows that 

 

 
 -
-

0( )     -   
- -

t t
n t n e e

ρ λ β ρ
β ρβ ρ

β ρ β ρ
−

Λ
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (4.33) 

 

After a positive reactivity insertion the power thus increases almost immediately with a factor 

β/(β - ρ) (the so-called prompt jump), because the second term dies out very rapidly, after which 

it gradually increases further with the reactor period (β - ρ)/ρλ. Therefore, the stable reactor 

period is determined by the delayed neutrons, while the slope of the prompt jump is determined 

by the generation time of the prompt neutrons. 

Figures 4.4 and 4.5 depict the flux as a function of time for positive and negative reactivity 

steps. For example, one sees that after a reactivity addition of $ 0.3 the flux almost immediately 

increases with circa 40 % and then increases further with a relatively long period (≈ 30 s). 

For ρ > β, the second term in the right hand side of (4.33) yields a positive contribution that 

increases very rapidly in consequence of the short generation time Λ: the reactor is prompt-

supercritical. 

Physically, the prompt jump can be understood by thinking in terms of multiplication of 

neutrons. The multiplication M of a multiplying system is understood to mean the average of the 

total number of neutrons in successive generations after introducing one neutron into the 

system, i.e. 

 

 2 1  1      ...  
1-eff eff

eff

M k k
k

= + + + =  (4.34) 

 

Of course this quantity only has meaning if keff < 1, so for subcritical systems. For a reactor that 

is not prompt-supercritical, one can define the prompt multiplication, i.e. the multiplication via 

prompt neutrons only: 

 

 

22  1   (1- )   (1-   ...)
1 1 1 1      

1-  (1- ) - -

eff eff

eff eff

M k k

k k

β β

β β ρ β ρ

= + + +

= = ≈
 (4.35) 

 

For a critical reactor (ρ = 0) the prompt multiplication is 1/β, which for a reactor with 235U as 

nuclear fuel results in a value of circa 150, i.e. on average each neutron produces a chain of 150 
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neutrons. After dying out of such a chain, which happens in a short time because of the short 

generation time Λ, the emission of a delayed neutron is necessary in order to initiate a new 

chain. 

 

 
Figure 4.4. Reactor response after a positive reactivity step 

 

 
Figure 4.5. Reactor response after a negative reactivity step 
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After the reactivity change, the prompt multiplication is given by (4.35), so that the prompt 

multiplication increases or decreases by a factor β / (β - ρ). 

When introducing a large negative reactivity, as in the case of stopping a reactor by inserting all 

of the control rods into the core, the stable reactor period is almost equal to the inverse decay 

constant of the longest-living group of delayed neutrons, i.e. about 80 s, as can also be deduced 

from Figure 4.2. 

With regard to the fraction β of delayed neutrons, it must be remarked that in practical cases one 

should not use the values of Table 4.1. The reason for this is that the delayed neutrons on 

average have a lower energy than the prompt neutrons (0.5 MeV and 2 MeV, respectively). 

Because of this, their probability of leaking out of the reactor is smaller, so that their 

contribution to the chain reaction is larger in terms of percentage. Therefore, one should use an 

effective value βeff, which can be up to 15 % larger than the actual fraction β. 

 

4.4. Temperature effects 

 

In preceding considerations about the reactor kinetics in the seconds domain it was assumed that 

keff does not depend on the reactor power. In reality a power increase will result in a temperature 

increase, by which keff is affected. The physical mechanisms that occur can be depicted 

schematically as follows: 

schematically as follows: 

 
  

In order to describe the influence of all these processes on the reactivity, one defines the 

temperature coefficient α: 

 

 
d  
dT
ρα =  (4.36) 

 

so that a temperature increase ΔT results in a reactivity increase Tρ αΔ = Δ . 

temperature 
increase 

density decrease Σ’s change 

heat movement of the 
atomic nuclei increases

keff changes 
spectral shift in  
thermal region 

Doppler effect in 
resonance region 
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If a reactor has been designed in such a way that the temperature coefficient is positive, in the 

case of a temperature increase in the reactor by whichever cause the reactivity will increase, by 

which the power increases and the temperature rises further. This implies an unstable system, 

which must be avoided. If the temperature coefficient is negative, then a temperature increase 

will be counteracted by a negative reactivity and thus a power decrease. 

In a simple description of the heat balance of the reactor with thermal power P(t), the heat is 

transferred to a reservoir of constant temperature Tr by means of an overall heat-transfer 

coefficient K. The difference in heating power is used for heating of the reactor, so that 

 

 { }   (  ) -   (  ) -  p rm
dTC V P t K T t T
dt

ρ =  (4.37) 

 

in which ρm is the density, Cp the specific heat capacity and V the volume of the reactor. For a 

critical reactor with power P0, it follows for the steady-state temperature that 

 

 0
0    r

PT T
K

= +  (4.38) 

 

If, for the sake of simplicity, we consider the reactor kinetics without delayed neutrons but with 

an effective generation time Λeff, in which the influence of the delayed neutrons has been taken 

into account, then the equation for the power, analogous to (4.7), reads 

 

 
(  )   (  )

eff

dP t P t
dt

ρ
=
Λ

 (4.39) 

 

in which the reactivity ρ is the sum of the externally imposed reactivity (for example by moving 

the control rods) and the reactivity as a result of the temperature effect 

 

 { }0( )      ( ) -  extt T t Tρ αρ= +  (4.40) 

 

These equations can be solved for a constant reactivity insertion ρext by considering the power 

and temperature changes, ( ) ( ) 0p t P t P= −  and ( ) ( ) 0t T t Tθ = − , respectively, and linearising 

the equations by neglecting the second-order term ( ) ( )t p tθ . For a positive reactivity step and 

positive α, the power will keep increasing and faster than according to the kinetics discussed in 

Section 4.2. For a negative temperature coefficient, the reactivity increase ρext at a temperature 
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1 0 /extT T ρ α= −  will be compensated by the temperature feedback. The power will then 

stabilize at a value P1, for which follows from (4.37) that 

 

 ( )1 1    - rP K T T=  (4.41) 

 

For the stationary power we thus find 

 

 1 0
 

   - extK
P P ρ

α
=  (4.42) 

 

As the temperature in the reactor is not uniform, it is better to distinguish between the nuclear 

fuel with average temperature Tf and the moderator/coolant with average temperature Tm, for 

which separate temperature coefficients αf and αm are defined 

 

    
m

f
f T

T
ρα

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠

 (4.43) 

 

 

    
f

m
m T

T
ρα

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (4.44) 

 

so that the reactivity change by temperature changes ΔTf of the nuclear fuel and ΔTm of the 

moderator are given by 

 

    f f m m   T Tρ α αΔ = Δ + Δ  (4.45) 

 

Of course, the temperature coefficients may themselves depend on the temperatures. One can 

set up separate heat balances for the nuclear fuel and the moderator, analogous to (4.37). 

However, working those out carries too far. 

The temperature coefficient of the nuclear fuel is determined by the nuclear Doppler effect (see 

also Section 1.4). A temperature increase in the nuclear fuel is accompanied by an increase of 

the velocity of the atoms by their lattice vibrations. The lattice vibrations are the cause of the 

fact that mono-energetic neutrons have a certain energy spread with respect to the atomic nuclei 

(analogy with the acoustic Doppler effect). This spread becomes larger as the temperature 

increases and results in a broadening and lowering (‘spreading’) of the resonance peaks. This 

leads to an increase of the resonance absorption. The area below each resonance peak remains 
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the same, but the absorption in the flanks of the peak increases, while the absorption in the 

vicinity of the peak maximum hardly decreases, because in practical cases the absorption here is 

almost 100 %. When the absorption in the resonance region in 238U dominates the fission in 
235U, so for not too high a degree of enrichment, αf will be negative and the reactivity will 

decrease with increasing temperature of the nuclear fuel. 

The temperature coefficient of the moderator is determined by the density change of the water 

with temperature (for boiling-water reactors also by the change of the steam fraction) and the 

change of the moderation of the fast neutrons. We will return to this in Section 6.6. 

As the Doppler coefficient is determined by the temperature increase of the nuclear fuel, this 

takes effect much faster than the moderator temperature and the void  coefficient, for these have 

a delayed effect as a result of the necessary heat transfer. The time scales of the various 

temperature effects, which depend on the thermohydraulic circumstances, thus have an 

important influence on the stability of the reactor. 

 

4.5. Burn-up and conversion 

 

Longer-term reactivity effects in a working reactor are the nuclear fuel consumption and the 

conversion of non-fissile nuclides (fertile material) in the nuclear fuel. The most important 

example of such a conversion reaction is 

  

 ( )238 239 239 239
1/ 223.5 min 2.3         24000    dU n U Np Pu T a β β− −

+ → ⎯⎯⎯⎯→ ⎯⎯⎯→ =   

 

On the basis of such reactions one can define the conversion ratio C 

 

 
production rate of fissile nuclidesC

consumption rate of fissile nuclides
=   

 

The larger this ratio, the more one uses the nuclides that were non-fissile in the beginning, such 

as 238U. When the total amount of fissile nuclides increases with time (C > 1), one speaks of a 

breeder reactor; this can only be realized in fast reactors, because then the number of neutrons 

that is released per absorbed neutron is amply above the value 2. 

For a 235U−238U reactor the ‘burn-up’ equations can be established easily. For example, for the 

concentrations of 235U, 238U and 239Pu the following equations hold: 

 

 5
5 5  - a

dN N
dt

σ φ=  (4.46) 
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 8
8 8  - c

dN N
dt

σ φ=  (4.47) 

 

 9
8 8 9 9  c a

dN N N
dt

σ φ σ φ= −  (4.48) 

 

In these equations, the indices indicate the nuclides. In (4.48) the average lifetime of the 

intermediate products 239U and 239Np has been neglected. The equations can easily be extended 

to higher plutonium isotopes (240Pu, 241Pu, 242Pu), for the absorption in 239Pu partly (capture) 

gives rise to formation of 240Pu, etc. Gradually the fissile plutonium isotopes will also start to 

contribute to the power production, so that the 235U inventory will not decrease linearly with 

time in a reactor operating at constant power. Figure 4.6 shows the change in concentration of 

the most important nuclear fuel nuclides in a light-water reactor. Along the horizontal axis the 

fluence is marked out, i.e. the time integral of the flux density. Usually the burn-up of nuclear 

fuel is expressed in MWd/t (megawatt days per tonne of nuclear fuel). As burn-up of 1 g of 

nuclear fuel yields about 1 MWd (Section 1.2), a burn-up of, for example, 10.000 MWd/t 

implies that about 1 % of the nuclear fuel present (all nuclides included!) has been burnt up. The 

highest fluence value in Figure 4.6 thus corresponds with a burn-up of almost 40,000 MWd/ton. 

As the burn-up increases, more fission products are formed, which swell the nuclear fuel. 

Because of this there are technological limits to the achievable burn-up. 
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Figure 4.6. Change in nuclear fuel composition as a function burnup in  a light-water reactor 
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4.6. Fission products 

 

Of the many nuclides that are formed as fission products in a reactor, two are of special 

importance, because they have very high absorption cross sections, so that their presence has a 

large influence on the reactivity. These two nuclides, 135
54 Xe (xenon) and 149

62Sm  (samarium), are 

known as reactor poisons, 135Xe is the most important reactor poison with σa = 2.65⋅106 barn. It 

is partly formed directly during fission, but for a more important part as decay product of 135Te 

(tellurium) and 135Ι: 

  

135Te (tellurium) en 135I 
 
 fission     
  
          3.3 %     3.1 %       0.25 % 
               
              
              
         

 
The half-life of tellurium-135 is so short, that iodine-135 can be considered as the primary 

fission product. 

The effect of xenon-135 on the reactivity depends on its concentration during reactor operation 

and after shutdown of the reactor. The equation for the iodine concentration Ι is: 

 

    - I f I
dI I
dt

γ φ λ= Σ  (4.49) 

 

in which γΙ is the fission yield of 135Ι including that of 135Te (γΙ = 0.064) and λΙ the decay 

constant. A term for neutron capture is lacking, because this is negligible for 135Ι. For the xenon 

concentration X the following holds: 

 

        -   -  I f X aXX
dX I X X
dt

λ φ λ σ φγ= + Σ  (4.50) 

 

In view of the half-lifes in the tellurium decay chain, the equilibrium concentration of 135Xe in a 

reactor operating at constant power will be reached after circa two days: 

 

 
- - - -

135 135 135 135 135
  53   54   55   5652 619.2 6.6 9.2 2.10      ( )    s h h aTe I Xe Cs Ba stableβ β β β⎯⎯⎯→ − ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→  
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fI X

X aX
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φγ γ

λ σ φ
+ Σ=
+

 (4.51) 

 

 
Figure 4.7. Equilibrium xenon poisoning as a function of the neutron flux 

 

 

Figure 4.7 shows σaXX0/Σf as a function of the flux φ. The effect of the xenon concentration on 

the reactivity can easily be determined if we consider a homogeneous reactor and assume that 

the presence of 135Xe does not influence the leakage of neutrons from the reactor. The change in 

reactivity can then be described as: 
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 (4.52) 

 

in which kX and k∞X are the multiplication factors of the ‘poisoned’ reactor. According to Figure 

4.7, ρX will increase with increasing φ and reach an asymptotic value if φ >> λX/σaX = 7.5⋅1012 

cm-2s-1. 

For example, for the ‘Higher Education Reactor’ at Delft with 93 % enriched uranium, in the 

equilibrium situation φ = 1013 cm-2s-1 and k∞ = 1.4, so that ρX = − 2.1 %. Therefore, in order to 

compensate for the xenon effect during continuous operation an additional reactivity of over 2 

% must be available. (It is noted that the reactor in Delft now uses Low Enriched Uranium). 
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By solving equations (4.49) and (4.50) at constant flux, one can calculate how the xenon 

concentration accumulates with time after start-up of the reactor. 

Another important aspect of xenon poisoning is the behaviour after a reactor shutdown; we 

thereby assume that before shutdown xenon equilibrium is present. Immediately after shutting 

down the reactor, the terms containing φ are dropped from the right part of (4.50), while the 

concentration of Ι is still determined by the steady-state solution of (4.49): Ι0 = γΙΣfφ /λΙ. The 

production rate of xenon directly after shutdown is given by λΙΙ0, while the rate of disappearance 

is given by λXX0. If now λΙΙ0 > λXX0 or 

 

 11 2 1

 

   3 10  X X

aXI

  cm sγ λφ
σγ

− −> = ⋅  (4.53) 

the rate of production is larger than the rate of disappearance and at first the xenon 

concentration increases. The rate of the increase depends on the original neutron flux and 

increases with increasing flux. The xenon concentration will reach a maximum as a result of the 

decay of 135Ι, after which all xenon will disappear by radioactive decay. This behaviour is 

depicted in Figure 4.8. For large values of φ a maximum occurs at ln(λΙ/λX)/( λΙ − λX) ≈ 11.2 h 

after shutdown of the reactor. An important consequence of this ‘xenon peak’ after a reactor 

shutdown is that, unless sufficient additional reactivity is present, it cannot be possible to start 

up the reactor again before many hours have passed. Also in the case of a varying reactor power 

xenon transients will continually occur, whereby, analogous to the increase of the xenon 

concentration after a reactor shutdown, the concentration can at first increase after a power 

 
Figure 4.8. Xenon poisoning as a function of time after shutdown of a reactor 
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Figure 4.9.  Xenon transients for varying power 
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reduction. Vice versa, in the case of a power increase, the xenon concentration at first can 

decrease. Figure 4.9 illustrates such a transient. 

 

The fission product 149Sm (σa = 4.1⋅104 b) is formed in the following chain of fission products 

(short-lived nuclides in the start of the chain have been omitted): 

 

          fission 

 

     1.09 % 

   

 
- -

149 149 149
60   61   621.73 53.1     ( )    h hNd Pm Sm stable β β⎯⎯⎯→ ⎯⎯⎯→  

 

In the same manner as indicated above for xenon, one finds for the equilibrium concentration of 
149Sm: 

 

 0
Nd f

aS

S
γ
σ
Σ

=  (4.54) 

 

This concentration is independent of the neutron flux, because 149Sm is stable. 

For the reactivity effect one finds: 

 

 
0

 -  S Nd
kρ γ
ν
∞=  (4.55) 

 

For the example of the ‘Higher Education Reactor’ thus holds that ρS0 = − 0.6 %. 

It is left to the reader to check how fast the accumulation of the samarium concentration occurs 

after start-up of a reactor and how the samarium concentration changes after a reactor shutdown. 

 

4.7. Reactivity and reactor control 

 

When putting a reactor into operation, a certain ‘overreactivity’ must have been invested in the 

core, which must be controlled by neutron capture in control components. This overreactivity is 

the reactivity of the core in the imaginary case that all control components have been removed. 

By gradually reducing the neutron capture in the control components, one can compensate the 

decrease in reactivity that occurs during reactor operation and maintain the desired power. 
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Table 4.2. Reactivity effects in a pressurized-water reactor and a boiling-water reactor 
 

Reactor type  PWR 
 Borssele 

 BWR 
 Gundremmingen 

Average nuclear fuel enrichment in new core  
(% 235U) 

 
2.8 

 
2.22 

keff of new core 1.28 1.26 

Reactivity effects during operation (Δk in %) 

poisoning (Xe + Sm) 
temperature effect 
bubble formation 
burn-up 

4 
7 
- 

16 

4.0 
1.4 
1.6 
18.0 

Reactivity value of neutron absorbers for control (Δk in %) 

control rods 
absorber plates 
boric acid 
boron salt injection for emergencies 

9 
- 

23 
- 

20 
10 
- 

18 
 

Table 4.2 shows the values of the different reactivity effects for a pressurized-water reactor and 

a boiling-water reactor. The total reactivity value of the neutron absorbers used for reactor 

control is chosen in such a way that the reactor is sufficiently subcritical in the case of control 

rods that are completely driven in. The so-called ‘shutdown margin’ is usually expressed in 

percentage negative reactivity value and for the reactors in Table 4.2 amounts to 4 % in the case 

of a cold ‘clean’ core (no fission products and burn-up). 

Three kinds of neutron absorbers can be distinguished: 

- controllable absorbers (control rods); 

- liquid absorbers, homogeneously mixed with the moderator (boric acid in PWRs); 

- solid absorbers that have been built in the nuclear fuel and gradually disappear during 

reactor operation (‘burnable poison’ such as boron and gadolinium). 

The control rods serve for the normal start up and shutdown of the reactor, changes in power 

and emergency shutdowns; boric acid and burnable poison mainly serve as compensation of the 

burn-up. 

Adding boric acid to the coolant of pressurized-water reactors enables reactor operation with the 

control rods almost completely withdrawn, which has the advantage of a more uniform power 

density distribution in the reactor core than in the case of partially inserted control rods.  

In boiling-water reactors often a device is present for injecting boric acid or a boron salt, which 

can serve as an emergency shutdown system should difficulties occur with the control rod drive 

mechanisms. The quantity k∞ is sketched in Figure 4.10 as a function of the specific energy 

produced in the nuclear fuel, expressed in MWd/ton. 
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Figure 4.10. k∞  as a function of the degree of burn-up (numbers are characteristic 
 of light-water reactors) 

 

 

This pattern is the resultant of the effects discussed in the preceding paragraphs: 

1. a rather rapid build-up of the xenon and samarium poisoning to an equilibrium value; 

2. a gradual decrease of the reactivity by nuclear fuel consumption; 

3. an increase of the reactivity by formation of plutonium (conversion); in light-water reactors. 

at the end of the life of the core the formed plutonium takes part in the energy production 

for about 50%; 

4. in the presence of a burnable poison, the disappearance of this poison can at first cause a 

reactivity increase. Here ‘disappear’ means: conversion into nuclides with low capture cross 

sections, for example: 
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By applying burnable poisons the reactivity change during the life of the core is limited, 

which simplifies the reactivity control with the aid of the control rods. 

 

With burnable poison

Burnup (MWd/ton) Discharge 
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Control rods, of course, influence the spatial flux distribution in a reactor core and thus the 

power density distribution. This should be taken into account when designing and operating a 

reactor, because the temperature distribution, which is connected with the power density 

distribution, is decisive for the maximum power that can be produced in a safe manner. 

The reactivity effect of a control rod depends, amongst other things, on the insertion depth into 

the core. Figure 3.6 includes the importance function for a change in the macroscopic absorption 

cross section, which occurs if a control rod is moved over a small distance. Although the 

perturbation theory of Section 3.3 is not valid for such heavy disturbances as a control rod, it 

does give an indication for the effect that is to be expected. The differential reactivity of the 

control rod is thus approximately proportional to 

 

 2  ( )d z
dz
ρ

φ÷  (4.56) 

 

A reactor core will generally be surrounded by a reflector, so that the flux at the edge of the core 

will not yet go to zero. The characteristic shape of a differential and an integral reactivity curve 

are shown in Figure 4.11. 

In general, these curves are asymmetric due to ‘shadow effects’ of other control rods, which 

give an asymmetric flux distribution along the path of the control rod considered. Such curves 

can be determined experimentally by measuring the reactor response, for example the stable 

reactor period, to a movement of the control rod. 

 
Figure 4.11. Differential and integral reactivity curve of a control rod 
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Chapter 5 

Energy dependence of the neutron flux 

 

In the preceding chapters we have treated the steady-state and time-dependent behaviour of 

reactors using the diffusion theory for mono-energetic neutrons or the one-group theory. 

In this chapter we will pay attention to the energy dependence of the neutron spectrum in the 

reactor. Seeing that obtaining an analytical solution of the energy-dependent diffusion equation 

is almost impossible, we must resort to an approximating description. 

 

5.1. Multi-group diffusion theory 

 

We obtain the energy-dependent diffusion equation by integrating the transport equation (2.8) 

over Ω and replacing the flow term − ∫ Ω⋅∇φ (r,E,Ω,t)dΩ = − ∇⋅J(r,E,t) by ∇⋅D(r,E)∇φ (r,E,t), 

analogous to the one-group diffusion theory 

 

  

0

1 ( , , ) ( , ) ( , , ) ( , ) ( , , )

( , , ) ( , ) ( , , )

t

s

r E t D r E r E t r E r E t
v t

S r E t r E E r E t dE

φ φ φ

φ
∞

∂
= ∇ ⋅ ∇ −Σ

∂

′ ′ ′+ + Σ →∫
 (5.1) 

 

As the energy range comprises many decades (e.g. 10-4 eV to 10 MeV) and the microscopic 

cross sections may show very sharp resonance peaks (see Section 1.4), a solution by fine 

discretisation of the energy range is doomed to failure. Therefore, we divide the whole energy 

range in (a limited number of) energy groups (see Figure 5.1). Seeing that the neutrons are 

released with high energy during fission and lose energy by moderation, the groups are 

generally numbered from high to low energy. 

 

 

 
 
 
 

Figure 5.1. Division into energy groups 
 

 

EN EN-1      Eg          Eg-1         E1        E0 

Group-g 
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We define the so-called group flux φg for energy group g as 

 

 
1

( , ) ( , , ) ( , , )
g

g

E

g
E g

r t r E t dE r E t dEφ φ φ
−

= =∫ ∫  (5.2) 

 

By integration of equation (5.1) over the energy interval of group g, we obtain the coupled 

multi-group diffusion equations 

 

 

( , )1 ( ) ( , ) ( ) ( , )

( ) ( , ) ( , )

g
g g tg g

g

g g g g
g

r t
D r r t r r t

v t

r r t S r t

φ
φ φ

φ′ ′
′

∂
= ∇ ⋅ ∇ −Σ

∂

+ Σ +∑
 (5.3) 

 

If fission occurs in the system, the source of group g is given by 

 

 ,( , ) ( ) ( , ) ( , )g g g fg g g ext
g

S r t r r t S r tχ ν φ′ ′ ′
′

= Σ +∑  (5.4) 

 

Here gχ  is the fraction of neutrons with an energy in group g that is released during fission and 

Sg,ext is an external source. In fact, in (5.3) the following definitions have been introduced 

 

 
1 ( ) ( , , )tg t
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E r E t dEφ
φ

Σ = Σ∫  (5.5) 

 

 
( ) ( , , )
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 (5.6) 

 

 
1 ( ) ( , , )g g s
g g g

E E r E t dE dEφ
φ′

′ ′

′ ′ ′Σ = Σ →∫ ∫  (5.7) 

 

 
1 1 1 ( , , )
g g g

r E t dE
v v

φ
φ

= ∫  (5.8) 

 

These definitions of the so-called group cross sections are only formal, as for their application 

the flux φ(r,E,t) within group g must be known. In order to still be able to use the group cross 

sections, an approximation is sought for this flux, whereby moreover it is assumed that this flux 
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can be separated into a position- and time-dependent part on the one side and an energy-

dependent part on the other side. Notice that without this last approximation even for a 

homogeneous system these group constants are position and time dependent. 

In order to get an approximated description for the energy dependence φ(E) of the flux, we will 

first study the moderation process of the neutrons and to this end derive the form of the 

macroscopic scattering cross section ( )'s E EΣ →  by analysis of the collision process of a 

neutron with a nucleus. 

 

5.2. Energy transfer in elastic collisions 

 

The neutrons released during fission with an average energy of 2 MeV, in a reactor on average 

undergo a number of collisions before they are absorbed. As a result of these collisions (elastic 

and inelastic) they lose energy, so that the reactor spectrum is always ‘softer’ than the fission 

spectrum. In thermal reactors, use is made of this moderation of neutrons in order to profit from 

the larger cross sections at lower energies. In these reactors, the neutrons are predominantly 

absorbed only when they are in kinetic equilibrium with the thermal movement of the atomic 

nuclei. The energy distribution of the thermal neutrons is treated in Section 5.4. 

Elastic collisions form the most important mechanism for slowing down neutrons, because 

inelastic collisions only play a part in the case of heavy nuclei and only at high energies (see 

Section 1.4). 

Elastic scattering can be considered as a collision of two hard spheres and can be described with 

the aid of classical mechanics. The neutron with mass m has a vector velocity 'v  before 

collision and a velocity v  after collision. The energy of the neutron 'E =½ m 2'v is much larger 

than that of the nucleus, so that the nucleus can be considered as motionless. After collision, the 

nucleus has a velocity V. The velocity of the neutron after collision can be calculated with the 

laws of conservation of momentum and energy. However, this is easier by transformation to the 

centre-of-mass system, the origin of which is in the centre-of-mass of the colliding particles (see 

Figure 5.2). This is thus a moving co-ordinate system with velocity 

 

 
1

1cm
mv MV mvv v

m M m Am A

′ ′ ′+ ′= = =
+ + +

 (5.9) 

 

with A = M/m the mass of the nucleus with respect to the mass of the neutron. If we indicate the 

velocities in the centre-of-mass system with u and U for the neutron and the nucleus, 

respectively, the following holds 
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1cm

Au v v v
A

′ ′ ′= − =
+

 (5.10) 

` 

 

 
1

1cmU V v v
A

′ ′ ′= − = −
+

 (5.11) 

 
Figure 5.2. Collision in laboratory and centre-of-mass system 

 

 

The momentum in the centre-of-mass (cm) system is equal to zero both before and after the 

collision, so that for the velocities after the collision holds that 

 

 
1U u
A

= −  (5.12) 

 

The law of conservation of kinetic energy, applied to the centre-of-mass system, yields 

 

 
2 2 2

21 1½ ½ ½ ½
1 1

Am v mA v mu mA u
A A A

⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′+ = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (5.13) 
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For the magnitude of the velocities after the collision in the centre-of-mass system it follows 

from (5.13) that 

 

 
1

Au v
A

′=
+

 (5.14) 

 

 

 
1

1
U v

A
′=

+
 (5.15) 

 

with which it has been demonstrated again that the magnitude of the velocities in the centre-of-

mass system does not change upon collision. One gets the velocity of the neutron in the 

laboratory system by the transformation 

 

 cmv u v= +  (5.16) 

 

 
Figure 5.3. Back-transformation to the laboratory system 

 

 

In the centre-of-mass system, the neutron is scattered over an angle θc (see Figure 5.3), so that 

with the aid of the cosine rule we find: 

 

 
2 2

2 2 2 2
2

1 2
1 1 ( 1) c

A Av v v v
A A A

μ⎛ ⎞ ⎛ ⎞′ ′ ′= + +⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠
 (5.17) 

 

with μc = cos θc. So that finally 

 

vcm
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22

2 2

2 1
( 1)

cA AE v
E v A

μ+ +
= =
′ ′ +

 (5.18) 

 

with which the energy after the collision has been expressed in the energy before the collision 

and the scattering angle in the centre-of-mass system. 

The maximum energy transfer takes place if θc = 180o or μc = − 1, so in the case of a frontal 

collision: 

 

 
2

min

1
1

E A
E A

α−⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟′ +⎝ ⎠ ⎝ ⎠
 (5.19) 

 

For 1H (with small rounding) A = 1, so that α = 0. In the case of a frontal collision, the neutron 

will therefore transfer all of its energy to the hydrogen nucleus. For 12C the maximum energy 

loss is 28.4 % and for 235U only 1.7 %. For effective moderation of neutrons in thermal reactors, 

one will thus have to choose materials with low A values. 

Of course, frontal collisions do not always occur, so we have to look at the probability 

distribution for a certain energy transfer. It appears that for energies below circa 1 MeV, 

scattering in the centre-of-mass system is isotropic, i.e. all directions have an equal probability 

of occurring. For the probability distribution for a direction Ωc in the centre-of-mass system it 

then holds that 

 

 ( )
4

c
c c

dp d
π
Ω

Ω Ω =  (5.20) 

 

From this, by integration of the azimuthal angle ψc it follows for the probability distribution of 

the cosine of the scattering angle μc in the centre-of-mass system that 

 

 
2

0

( ) ( ) ½cc cp p d
π

μ ψ= Ω =∫  (5.21) 

 

As the energy E after the collision unambiguously depends on μc, we finally obtain 
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for the probability distribution of the energy after scattering. Hereby the derivative of (5.18) has 

been determined. As the probability distribution does not depend on E, all energies between αE/ 

and 'E  are equally probable. We can write the differential scattering cross section 

( )'s E EΣ → , which appears in (5.1) and in the definition of the group scattering cross section 

(5.7), as 

 

 
( )( )

(1 )
s

s
EE E E E E

E
α

α
′Σ′ ′ ′Σ → = < <

′ −
 (5.23) 

 

From Figure 5.3 we can also determine the relation between the scattering angles in the centre-

of-mass system and the normal (laboratory) system. If we call μ0 = cos θ  the cosine of the 

scattering angle in the laboratory system, then 

  

 0 mmp cv v uμ μ= +   (5.24) 

 

or 
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11
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Figure 5.4. Relation between cosine of scattering angle 

 in centre-of-mass and laboratory system 
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This relation is shown in Figure 5.4. The isotropy in the centre-of-mass system thus gives a 

preference for forward scattering in the laboratory system, which is stronger according as the 

nucleus with which the neutron collides is lighter. At high neutron energies, a forward 

preference occurs in the centre-of-mass system also, which results in strongly forwardly 

directed scattering in the laboratory system and thus a preference for smaller energy transfer. 

With the aid of (5.25) we can now also calculate the average value of the cosine of the 

scattering angle in the laboratory system 0μ , which quantity appears in the definition of the 

macroscopic transport cross section (2.20) and with that in the definition of the diffusion 

coefficient 

 

 
1 1

0 0 0 0 0
1 1

2( ) ( ) ( )
3c c cp d p d

A
μ μ μ μ μ μ μ μ

− −

= = =∫ ∫  (5.26) 

 

As in elastic collisions on average a constant fractional energy loss occurs per collision, it is 

also useful to work with logarithmic quantities. For example, one defines an average 

logarithmic energy decrement per collision: 

 

 ln ln ln ( ) 1 ln
1

E

E

EE E p E E dE
Eα

αξ α
α

′

′

′
′ ′= − = → = +

−∫  (5.27) 

 

With the aid of this quantity it is easy to calculate the average number of collisions that a 

neutron must undergo in order to slow down from, for example 2 MeV to 1 eV: 

 

 6(2 MeV 1eV) ln 2 10 / 14.5 /N ξ ξ→ = ⋅ =  (5.28) 

 

Table 5.1 gives a number of values. 

 

Table 5.1. Moderation data for some elements 
 

Element A ξ N (2 MeV → 1 eV) 

H 
D 
He 
Be 
C 
O 

1 
2 
4 
9 

12 
16 

1.000 
0.725 
0.425 
0.207 
0.158 
0.120 

15 
20 
34 
70 
92 

121 
 

In connection with the logarithmic character of the moderation process, one also sometimes uses 

the concept of ‘lethargy’ u (‘laziness’) instead of energy, defined as 
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 0( ) ln Eu E
E

=  (5.29) 

 

in which E0 is a suitably chosen reference energy. For example, if one chooses E0 = 2 MeV, 

then the lethargy of neutrons with the average fission energy is equal to zero, while u(1 eV) = 

14.5. The average number of collisions in order to reach a lethargy u then is: 

 

 ( ) /n u u ξ=  (5.30) 

 

Now it is easy to make a list of requirements for a good moderator material: 

a) Σs large 

b) ξ large 

c) Σa small 

 

The product ξΣs is called the slowing-down power and indicates the average logarithmic energy 

loss per unit path length covered by a neutron. The quotient ξΣs/Σa is sometimes called the 

moderation ratio or moderator quality. Table 5.2 gives some values for moderator materials. 

 

Table 5.2. Slowing-down power and moderator quality of some often applied moderators 
 

Moderator slowing-down power (cm-1) moderator quality 

H2O 
D2O 
Be 
C 

1.35 
0.176 
0.158 
0.060 

71 
6000 

43 
192 

 

From this table it appears that normal water slows down the neutrons faster than heavy water. 

However, seeing that light hydrogen absorbs quite a lot of neutrons, heavy water is still a better 

moderator material. One of the consequences is that in light-water reactors enriched uranium 

(i.e. with over 0.71 % 235U) must be applied, whereas in heavy-water reactors natural uranium 

can be used. 

 

5.3. The epithermal spectrum for moderation 

 

The position and energy dependent neutron field in a reactor can be determined by solving the 

energy-dependent diffusion equation. In general, this requires the use of a computer. However, 

with a few simplified assumptions we can get insight in the energy distribution of neutrons 

during the moderation process along an analytical path. Firstly, we limit ourselves to such an 



 84

energy range that the source neutrons (coming from fissions and external sources) have already 

undergone a number of collisions before passing the upper limit of this range. In addition, the 

lower limit of the range is above the range where the thermal movement of the nuclei starts to 

play a part and the nuclei can no longer be considered motionless with respect to the neutrons. 

The range chosen in this way roughly extends from 1 eV to 100 keV and is called the epithermal 

range. In this range, the differential scattering cross section (5.23) is valid, if we limit ourselves 

to elastic collisions. The energy-dependent diffusion equation (5.1) for the steady-state situation 

reads 

 

 
/
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E

t s
E
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If we now consider an infinite homogeneous medium, in which absorption during moderation 

can be neglected, (5.31) reduces to 
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By substitution one can easily verify that this equation has the solution 

 

 ( ) ( ) ( )s
CF E E E
E

φ= Σ =  (5.33) 

 

The constant C can be determined by considering the slowing-down density q(E), i.e. the 

number of neutrons that ‘passes’ the energy E per cm3 and per second. As we assume that no 

absorption or leakage occurs, q is energy-independent and equal to the source strength per cm3 

as a result of fissions. For the slowing-down density it holds that (see Figure 5.5) 

 

 

/ /

( ) ( ) ( ) ( )
(1 )

1 ln
1

E E E

s s
E E E E E

E Eq E E dE E dE E E dE
E

C C

α α

α

αφ φ
α

α α ξ
α

′ ′′ ′= =

′−′ ′′ ′′ ′ ′ ′ ′ ′= Σ → = Σ
′ −

⎛ ⎞= + =⎜ ⎟−⎝ ⎠

∫ ∫ ∫
 (5.34) 
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Figure 5.5. Energy diagram for calculation of the slowing-down density 

 
 

so that  for the epithermal spectrum follows 
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qE
E E

φ
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 (5.35) 

 

As Σs(E) varies little over a large part of the epithermal range (potential scattering), under the 

assumptions made there is a so-called ‘1/E spectrum’. In thermal reactors this spectrum is 

approximated rather closely (except in the resonances). In systems without moderator (fast 

reactors), neglecting the epithermal absorption is not justified. 

 

5.4. Fermi age theory 

 

Equation (5.1) is the general diffusion equation for the space- and energy dependent neutron 

field. In section 5.3 this equation was solved for the simplified case of an infinite homogeneous 

medium without neutron absorption. In section 5.6 the influence of resonance absorption in an 

infinite homogeneous medium will be studied. In this section space dependence of the 

moderation process will be analyzed. In order to arrive at simple analytical expressions, neutron 

absorption during moderation will be neglected. The theory to be presented is known as Fermi 

age theory. 

 

The neutron balance for a unit volume and energy interval dE for a homogeneous and 

absorption free medium can be written as: 

 

 ( ) ( ) ( )2( ) , , ,D E r E dE q r E q r E dEφ∇ = − +  (5.36) 
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energy 
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By inserting the relation between slowing density q and neutron flux,  equation (5.37) can be 

transformed into an equation for the slowing down density. 

In the previous section we deduced for the slowing down density: 
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s
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E Eq r E E r E dE
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α α φ
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′− ′ ′ ′= Σ

′ −∫  (5.38) 

 

which for the case without neutron leakage is solved by: 

 

 ( ) ( )sE E E constantφ⋅Σ ⋅ =  (5.39) 

 

In case of a space dependent neutron flux, (5.39) will not be valid exactly because of neutron 

leakage from a volume element. However, assuming that the scattering nuclei are relatively 

heavy, the integration interval in (5.38) will be small (α ≈ 1) so (5.39) is a good approximation 

within the interval. The assumption is exact if the the interval width approaches zero, in other 

words in case the energy decrement per collision is so small that the moderation is effectively a 

continuous process. This approach is therefore known as the continuous slowing down model.  

In that case we can write for (5.38): 
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Combining (5.37) and (5.40) gives: 
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By introducing a new variable: 
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equation (5.41) can be written as: 
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where τ is the so-called Fermi age, defined as:   
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where E0 denotes the (mean) energy of the source neutrons. 

The Fermi age has the dimension of (length)2 and for this reason is also called moderation area. 

The term age has a historical origin because equation (5.43) is analogous to the Fourier equation 

for non-stationary heat transport, in which the time t replaces the τ in (5.43). The solutions of 

(5.43) for several geometries can therefore be found in text books on heat transport. 

 

In order to illustrate the physical meaning of τ we take the case of a monoenergetic point source 

with a strength of S neutrons/s in an infinite medium. The solution of (5.43) is then given by 

(see fig. 5.6): 

 

 ( )
2 / 4

3/ 2,
(4 )

rS eq r
τ

τ
πτ

−⋅
=  (5.45) 

 

Completely analogous to the way in which the diffusion length L was related to the distance 

travelled ‘as the crow flies’ by mono-energetic neutrons before being absorbed (section 2.2), we 

now calculate the mean quadratic distance travelled by neutrons before passing an energy E or, 

in other words, reaching the Fermi age τ(E): 

 

 2 2 2

0

1( ) 4 ( , ) 6r r r q r dr
S

τ π τ τ
∞

= ⋅ =∫  (5.46) 

 

which is completely analogous to equation (2.32). The Fermi age or moderation area can thus be 

considered as 1/6th  of the mean squared distance referred to. 
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Figure 5.6. Slowing down density for a monoenergetic point source in an infinite 

 homogeneous medium according to Fermi age theory 
 

In fact there is a difference between the moderation area given by (5.44) and a moderation area 

based on the definition of 1/6th of the mean squared moderation distance ‘as the crow flies’. The 

equation is based on the assumption of continuous slowing down, whereas the latter definition 

can also be applied to realistic systems in which moderation occurs in discrete steps which can 

be rather large like in low-A moderators. For this reason, the values given in literature for the 

Fermi age in moderators are based on measurements or on accurate transport calculations. In 

Table 5.3 values are given for experimentally determined moderation areas for fission neutrons 

to reach thermal energy (usually referred to as ‘the’ Fermi age in a moderator, although more 

general this quantity depends on both initial and final energies considered). 

 

Table 5.3. Fermi age for fission neutrons in some moderators 
 

Moderator Age in cm2 

water 
heavy water 
beryllium 
graphite 

33 
120 
98 

350 
 

 

5.5. The thermal neutron spectrum 

 

When fission neutrons are brought into an infinite medium that is free of absorption, after 

moderation they will become in ‘thermal’ equilibrium with the moderator nuclei, i.e. the 

neutrons behave as a strongly diluted gas in thermal equilibrium. Their energy distribution is 

thus given by the Maxwell-Boltzmann distribution for particles of an ideal gas at temperature T 

 

 
( )3/ 2

2( ) exp EM E E
kTkT

π
π

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (5.47) 
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in which k is the Boltzmann constant (k = 8.52⋅10-5 eV/K). The distribution function M(E) is 

normalised, so that the energy integral is equal to 1. 

For the thermal flux density it thus holds that 
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0
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2( ) ( ) 2 / expM
n EE n vM E mE

kTkT
πφ

π
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⎝ ⎠

 (5.48) 

 

in which n0 is the total thermal neutron density. This distribution is shown in Figure 5.7. 

The most probable energy (for which the spectrum is maximum) is E = kT. At room 

temperature this is 0.025 eV. The velocity corresponding with this energy is 2200 m/s. 

Therefore, tables of ‘thermal cross sections’ usually give the value for this velocity. At a reactor 

temperature of 590 K, a value characteristic of water-moderated reactors, the most probable 

velocity is 3100 m/s and the corresponding energy is 0.051 eV. 

The distribution (5.48) only holds for complete thermal equilibrium. In a nuclear reactor this 

equilibrium will never be complete because of absorption of neutrons and continuous ‘supply’ 

of neutrons from the epithermal range by moderation. As most absorption cross sections at low 

energy show 1/ E  behaviour (Section 1.4), low-energy neutrons are absorbed preferentially, 

which leads to  a shift of  the spectrum  to  higher energies.  The continuous supply of slowing- 

 
Figure 5.7.Thermal flux density based on the Maxwell-Boltzmann equation 
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down neutrons has a comparable effect, because at the high-energy side the thermal spectrum 

has a ‘1/E tail’. 

Although neutron leakage has an opposite effect, because with decreasing energy the diffusion 

coefficient D decreases as a result of the increasing cross sections and the leakage preferentially 

removes neutrons with higher energies, this effect is much less important. In order that the 

spectrum can still be described well with (5.48), one can introduce a neutron temperature Tn, 

which will be higher than the actual temperature. 

For global reactor calculations the thermal neutrons are treated as one group. For calculating the 

group thermal cross sections with (5.5) – (5.8), the thermal spectrum must be taken into 

account. In this way the thermal average absorption cross section with a 1/v dependence 

becomes 

 

 0
, 0

0
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a th a n
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E E T dE
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σ φ
σ πσ
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∞
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∫

∫
 (5.49) 

 

in which σa0 is the microscopic absorption cross section for 2200 m/s neutrons and Tn the 

effective neutron temperature of the thermal spectrum in K. 

Table 5.4 gives microscopic and macroscopic cross sections of all elements for 2200 m/s 

neutrons. As this table has reference to elements nature with their natural isotopic composition, 

the cross sections of, for example, enriched uranium cannot be read from this table. 

 

5.6. Calculation of group cross sections 

 

On the ground of the considerations in the previous sections, we can now make a global 

representation of the neutron spectrum in a thermal reactor for all energies. In the fast region 

(roughly above 100 keV) it will have the shape of a fission spectrum according to (1.2). In the 

epithermal region the spectrum will show a 1/E behaviour (except for the resonances) and in the 

thermal region (roughly down to 0.5 eV) a Maxwell-Boltzmann distribution according to (5.48). 

Such a spectrum is shown schematically in Figure 5.8. 
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Figure 5.8. Schematic flux spectrum in a thermal reactor 

 

This schematic spectrum is often used as averaging spectrum for the calculation of group cross 

sections according to (5.5) – (5.8). If this is done for a large number of small groups (circa 200) 

the deviation of the actual spectrum within a group will be small. 

After that, one could do a multi-group diffusion calculation with the actual reactor geometry. 

With a large number of energy groups this is hardly feasible. Therefore, one first applies 

condensation of energy groups, i.e. combining energy groups into a limited number of broad 

groups. The cross sections for the broad groups are then calculated using the neutron spectrum 

that is obtained from a calculation with the fine groups, but with much simplified representation 

of the geometry, for example a one-dimensional representation. 
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Table 5.4. Neutron cross sections of the elements for 2200 m/s neutrons 
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If the fine-group fluxes are given by φi, the microscopic cross section σxg for reaction type x 

(e.g. absorption) and for broad group g comprising the fine groups ng1 up to and including ng2 

can be calculated from 
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 (5.50) 

 

analogous to the integral form of (5.5). 
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With the broad-group cross sections obtained in this way, one can subsequently perform a 

reactor calculation with a more realistic representation of the geometry. However, often another 

intermediate step is necessary because of the very heterogeneous geometry of the reactor core: 

many fuel rods with cladding and surrounded by coolant / moderator, with in addition 

construction material and control rods. 

For a large homogeneous reactor core (i.e. large with respect to the slowing-down and/or 

diffusion length of the neutrons), in which the neutron spectrum in the largest part of the core is 

position independent, one obtains a method that can still be applied well for calculating broad-

group cross sections. The spectrum is characteristic of the composition of the core and is called 

the equilibrium spectrum. The spatial independence of this spectrum implies that for all (fine) 

groups the following equation holds 

 

 2 2 0Bφ φ∇ + =  (5.51) 

 

in which B2 is the buckling factor, which depends on the dimensions of the core (Table 3.1). As 

one can now replace the term Dg∇2φg in the diffusion equation by –DgB2φg for each group, one 

obtains a system of linear algebraic equations that can be solved by iteration. One sometimes 

calls this a ‘half-dimensional’ calculation, because the spatial dependence is not taken into 

account explicitly, but neutron leakage is still taken into account. 

The system of multi-group diffusion equations (5.3) for an eigenvalue problem now gets the 

form 

 

 2 0
G G

g
g g vg g g fg g g g g

g g g

D B
k
χ

φ φ ν φ φ′ ′ ′ ′ ′
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+ Σ − Σ − Σ =∑ ∑  (5.52) 

 

with G the number of groups and Σvg the removal cross section for group g 

 

 
G

vg ag gg
g g

′
′≠

Σ = Σ + Σ∑  (5.53) 

 

The total neutron flux can be normalised arbitrarily; a common choice is 

 -3 -11 1 cm s
G

g fg g
gk
ν φ′ ′ ′

′

Σ =∑  (5.54) 

 

so that the system of algebraic equations to be solved becomes 
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 2
G

g g vg g g g g g
g g

D B φ φ φ χ′ ′
′≠

+ Σ − Σ =∑  (5.55) 

 

For a certain choice of B2, after solution of (5.55) and substitution of the group spectrum φg
/ (g/ 

= 1, …, G) in (5.54), one finds the corresponding eigenvalue k, the effective multiplication 

factor (for B2 = 0 one finds the value of k∞). Via iteration one can find the material buckling 

factor corresponding with k = 1. 

As demonstration of such a half-dimensional calculation we take a three-group calculation for a 

fast reactor, consisting of 10 % 235U and 90 % 238U (atomic percents). The group parameters for 

the group boundaries 0, 0.4 MeV, 1.35 MeV and 10 MeV are given in Table 5.5. 

 

Table 5.5. Parameters for three-group calculation (neutron cross sections in barn) 

 
Nuclide 235U 238U 

group 1 2 3 1 2 3 

ν 
σf 
σc 
σtr 
σg→g+1 
σg→g+2 
χ g 

2.70 
1.29 
0.08 
4.5 

1.00 
0.50 

0.575 

2.53 
1.27 
0.13 
5.7 

0.50 
0 

0.326 

2.47 
1.77 
0.49 
10 
0 
0 

0.099 

2.60 
0.524 
0.036 

4.6 
1.41 
0.64 

0.575 

2.47 
0.01 

0.130 
5.8 

0.25 
0 

0.326 

0 
0 

0.260 
9.6 
0 
0 

0.099 
 

The system of equations (5.55) that must be solved for the core with atomic number densities 
235N = 0.0048⋅1024 cm-3 and 238N = 0.0432⋅1024 cm-3 considered here, is 
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in which 
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Because scattering only occurs to groups of lower energy, the system can be solved easily. For 

B2 = 0 one finds the so-called ‘infinite-medium spectrum’: 

 φ1 = 4.544 cm-2
 s-1 

 φ2 = 24.05 cm-2
 s-1 

 φ3 = 25.05 cm-2
 s-1 

and by substitution in (5.54) 

 

 
3

1 2 3
1

0.0756 0.0165 0.0210 1.266g fg g
g

k v φ φ φ φ∞
=

= Σ = + + =∑   

 

By iteration one finds the critical buckling factor B2 = 0.00580 cm-2 and the corresponding 

spectrum in the critical reactor: 

 φ1 = 4.25 cm-2
 s-1 

 φ2 = 18.39 cm-2
 s-1 

 φ3 = 17.88 cm-2
 s-1 

By comparison with the infinite-medium spectrum, one sees that the spectrum in the critical 

reactor is much ‘harder’, i.e. has a higher average energy. 

Incidentally, we can also determine the extrapolated radius of, for example, a spherical critical 

core of 10 atom percents enriched uranium. This amounts to R = π/B ≈ 41 cm. 

With the spectrum for a critical reactor, one can subsequently determine the cross sections for a 

one-group calculation. The results are given in Table 5.6.  

 

Table 5.6. Condensed one-group parameters 
 

     Nuclide 235U 238U 

     ν 
     σf 
     σc 
     σtr 

2.51 
1.493 
0.284 
7.47 

2.59 
0.0595 
0.178 
7.35 

 
 

The transport cross sections have also been calculated according to (5.50). From this one can 

then determine the diffusion coefficient for the one-group calculation. However, by analogy 

with (5.6), one would have to average the diffusion coefficient over the fine-group fluxes. This 

yields a somewhat different result. If one uses the directly averaged diffusion coefficient, then 

the one-group calculation yields the same critical buckling factor and thus the correct critical 

radius. The value of k∞ is, however, different than for the three-group calculation, because it has 

been determined with a different flux spectrum than for the critical sphere. 
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Notice that for a different enrichment percentage, different macroscopic cross sections appear in 

(5.56) and by that a different flux spectrum, so that the one-group parameters are also different. 

 
 

5.7. Treatment of resonances 

 

The method for calculating fine-group cross sections with an assumed flux spectrum φ(E) 

proportional to 1/E in the epithermal energy region as sketched above is not applicable for 

resonances in the microscopic cross section, because the flux then will considerably deviate 

from the 1/E behaviour. For a correct representation of especially the absorption as a result of 

resonances, a further elaboration is necessary. 

In thermal reactors the nuclear fuel is present together with a moderator, If we assume the 

nuclear fuel and moderator to be homogeneously mixed, the equation for the flux by extension 

of (5.32) becomes 
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In the left part now also absorption in the nuclear fuel (superscript F) has been included, while 

the right part is a sum of moderation contributions of nuclear fuel and moderator. At the same 

time, the scattering cross sections are considered to be energy-independent (potential scattering 

in the nuclear fuel). If the energy E is in the resonance and the width of the resonance is small 

with respect to the interval over which scattering can take place (‘narrow resonance’ 

approximation), then we may set the flux in the integrals in the right part equal to the flux 

prevailing above the resonance, where absorption is negligible. There the flux is proportional to 

1/E according to (5.35). This means that the flux per unit of lethargy, defined in (5.29), is 

constant outside the resonance: 
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Substitution of (5.59) yields 
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for the flux in the resonance. Here Σ0 = ΣF
s + ΣM

s is the total macroscopic scattering cross 

section. The absorption in the resonance then becomes 

 

 
0 0
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σ σ
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+Σ Σ +∫ ∫ ∫  (5.61) 

 

Here σ0 is a fictitious microscopic cross section equal to the total (potential) scattering cross 

section per nuclear fuel atom. The integral must be taken over the width of the resonance. For 

the determination of the group cross section for absorption, the contributions of all resonances 

in that group should be summed. This means that the integral in (5.61) can be taken over the 

whole energy interval of the group, because the absorption cross section outside the resonances 

is negligibly small. Such an integral is called the resonance integral and in fact is an effective 

microscopic cross section, which, multiplied by the flux per unit of lethargy that would prevail 

without absorption, gives the correct absorption rate. The resonance integral is dependent on the 

"surroundings” in which the nuclear fuel is present through σ0. The resonance integrals are 

usually calculated numerically for a number of values of σ0 by substitution of the Breit-Wigner 

equation (1.11) for the resonance absorption cross section. If σ0 is very large, the 1/E flux 

remains valid also in the resonance and one speaks of the infinitely diluted resonance integral. 

In other cases self-shielding occurs. The flux in the resonance is lowered by the presence of the 

absorber and less absorption occurs. 
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Chapter 6 

The neutron cycle in a thermal reactor 

6.1. The four-factor equation 

 

In chapter 3 a reactor analysis based on the diffusion theory has been presented, which can be 

applied to a large variety of reactors (both fast and thermal). 

In this chapter, we will approach the processes inside a reactor from a different point of view, 

which will lead to an equation for the calculation of the infinite and finite multiplication factor 

of a reactor. The method has been developed in the early years of nuclear energy and is only 

applicable to thermal reactors. Although this method provides considerably less detailed 

information and is less accurate, it does give a good insight in the parameters that are important 

reactor-physically and for that reason is still of value. 

Whereas the spectrum of a fast reactor has the character of a degraded fission spectrum, the 

spectrum of the thermal reactor is composed of a fission spectrum, an epithermal spectrum of 

neutrons being slowed down and a thermal spectrum. The difference between both reactor types 

clearly finds expression in Figure 6.1, in which the fission density is shown per unit of lethargy 

( ) ( )f fu E Eφ φΣ = Σ   . 

 
Figure 6.1. Fission density of neutrons in a thermal and a fast reactor 
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reactor 

Fast 

reactor 
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In fast reactors, fissions are caused by neutrons with a very broad energy distribution, so that for 

an accurate reactor analysis a division into many energy groups is necessary. In thermal 

reactors, the same accuracy can be achieved with less energy groups, because the most 

important neutron-physical processes occur in energy regions that can be clearly separated from 

each other. 

 

Figure 6.2 shows the neutron cycle in a thermal reactor. 

 

 

Figure 6.2. Neutron cycle in a thermal reactor 
 

The fate of neutrons is chiefly determined by six processes: 

1. The neutrons released upon fission can, as long as they have not yet been thermalised, cause 

so-called fast fission. As in thermal reactors natural or low-enriched (up to circa 4 %) 

uranium is used, mainly fast fission in 238U occurs, for which the threshold energy is about 1 

MeV, so that here the non-collided neutrons make the most important contribution. 

2. During the largest part of the moderation process, leakage is the main neutron loss factor 

and absorption can be neglected. For this reason, the intermediate spectrum in good 

approximation can be described with φ(E) ∝ 1/E. 

3. Resonance capture: during the last part of the moderation process, the neutrons ‘pass 

through’ the resonance region, where the probability of absorption in the nuclear fuel cannot 
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be neglected. An important part of this absorption consists of capture in 238U. In addition to 

this loss, there is, however, also some fission of 235U (see Figure 6.1). 

4. Leakage of thermalised neutrons. 

5. Parasitic capture of thermalised neutrons in the moderator and the construction materials 

(fuel cans, etc.). 

6. Absorption in the nuclear fuel, partly consisting of parasitic capture and partly giving rise to 

fission. 

 

One now defines six quantities: 

 

1. The fast fission factor: 

 

number of fast neutrons
number of fast neutrons produced by thermal fissions

ε =  

 

2.  The fast non-leakage probability: 

 

 Ps = fraction of the fast neutrons that does not leak from the reactor  

 

3. The resonance escape probability: 

 

 p = fraction of neutrons that passes through the resonance region without being 

absorbed  

 

4. The thermal  non-leakage probability: 

 

 Pt = fraction of the thermal neutrons that do not leak from the reactor  

 

5. The thermal utilisation factor: 

 

number of neutrons absorbed in the fuelf
total number of thermal neutrons absorbed

=  

 

6.  The eta factor or neutron yield factor: 

 

average number of fission neutrons released
number of neutronsabsorbed in the fuel

η =  
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 On the basis of these definitions it can be easily seen that the infinite multiplication 

factor is given by the so-called four-factor equation 

 

 k pfε η∞ =  (6.1) 

 

while the effective multiplication factor for a finite medium is given by 

 

 eff s tk k P P∞=  (6.2) 

 

The calculation of a thermal reactor now amounts to a calculation of the aforementioned six 

factors, which will be further analysed below. Before doing this, it is useful to notice that in the 

four-factor equation the resonance fission mentioned earlier is neglected. This is a consequence 

of the fact that this equation was developed when the first reactors, which used natural uranium 

as fuel and graphite as moderator, were realised. In these systems the mentioned omission is 

acceptable. For the current commercial reactors of the low-enriched light-water moderated type 

this simplification is not justified and the four-factor equation must be modified: 

 

 (1 ) resk pf pε η ε η∞ = + −  (6.3) 

 

whereby η and ηres are the average eta factors for the thermal region and the resonance region, 

respectively. The effective multiplication factor then becomes 

 

 (1 )eff s t res sk pf P P p Pε η ε η= + −  (6.4) 

 

When calculating the factors in the four-factor equation, we must keep in mind that most 

reactors are composed of a large number of fuel rods provided with cladding, with moderator 

material around it, which often also serves as coolant (see Figure 6.3). In such a reactor lattice 

one can define a unit cell, which repeats itself many times. For the determination of k∞ one can 

therefore limit oneself to a unit cell. One could calculate the flux behaviour in a cell by solving 

the diffusion equation, if one replaces the square cell by a cylindrical cell of equal geometric 

cross section. 

 

The flux depends on the energy of the neutrons, because the source of neutrons is different for 

fast and (epi)thermal neutrons. Figure 6.4 shows characteristic examples. 

For fast neutrons, the source is formed by the fission neutrons in the fuel rod. Therefore, here 

the flux is larger than in the moderator. For epithermal and thermal neutrons, the source is 

formed by neutrons that are moderated in the moderator, so that the flux in the rod is smaller 
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than in the moderator. In the case of resonance energies, the cross section in the rod is so large 

that the flux decreases very fast. 

We will now further analyse the factors in the four-factor equation. 

 

 

  
Figure 6.3. Definition of a unit cell 

 

 
Figure 6.4. The neutron flux in a unit cell; (a) fast, (b) resonance, (c) thermal neutrons 

 

 

6.2. The neutron yield factor 

 

The eta factor is related to the nuclear fuel and hardly depends on the surrounding moderator. 

For fuel composed of 235U and 238U η is given by 

 

cladding 

fuel rod 
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 (6.5) 

 

in which N5 and N8 are the atomic number densities of the isotopes 235U and 238U (when using 

other uranium isotopes or plutonium the equation is modified in a trivial way). Of course, the 

microscopic cross sections in this equation are averaged over the thermal region with the flux as 

weighting factor, analogous to (5.38). Equation (6.5) can also be written as 
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 (6.6) 

 

where e is the atomic degree of enrichment 

 

 5

5 8

 = 
+ 
Ne

N N
 (6.7) 

 

The microscopic cross sections for 235U and 238U for 2200 m/s neutrons are given in Table 6.1. 

For natural uranium η = 1.34. As a result of the ratios of the microscopic cross sections, η 

increases strongly for a low enrichment (see Figure 6.5); the limit value for pure 235U is 2.08. 

 

 
Figure 6.5. Neutron yield factor of uranium as a function of the degree of enrichment 

 
 

 
 
 



 

 105

 
 

Table 6.1. Microscopic cross sections at 2200 m/s 
 

  v  σf  σc 

        233U 
        235U 
        238U 
        239Pu 

2.498 
2.437 

– 
2.871 

525.1 
583.5 

– 
748.1 

45.9 
98.4 
2.70 
271.0 

 

 

6.3. The thermal utilisation factor 

 

The thermal utilisation factor is the fraction of the thermal neutrons that are absorbed in the 

nuclear fuel (all isotopes!) and is thus given by 
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 (6.8) 

 

with φF and φM the average flux in the fuel and the moderator. This equation can of course be 

extended for absorption in the fuel cladding. The ratio /M Fφ φ  is called the flux disadvantage 

factor and for thermal neutrons is larger than 1. This means that more neutrons are captured in 

the moderator than in the case of a flat flux in the unit cell. The thermal utilisation factor is 

dependent on the volume ratio of fuel and moderator and will increase with decreasing 

moderator-to-fuel ratio. 

Notice that in our previous one-group analysis for a homogeneous reactor, the multiplication 

factor for an infinite system according to (3.14) is equal to  

 

  =  =   =  
 + 

F
f f a

F F M
a a a a

fk
ν ν

η∞

Σ Σ Σ
Σ Σ Σ Σ

 (6.9) 

 

For this homogenised situation, the volume ratio of moderator and nuclear fuel indicates the 

mixing ratio of the materials. 
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6.4. The fast fission factor 

 

The fission neutrons originating in the fuel rod have a probability that the first interaction takes 

place in the rod with the possibility of fast fission, predominantly by 238U, as this usually is 

present in large quantities. Furthermore, a neutron can have a first interaction in another rod. If 

the first interaction occurs in the moderator, then the neutron will lose energy by collision and 

its energy will usually decrease to below 1 MeV, the fission threshold of 238U, so that fast 

fission can no longer occur. These effects are illustrated in Figures 6.6 and 6.7. For most 

reactors, ε is between 1 and 1.10.  
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Figure 6.6. Fast fission factor for a 'solitary' cylindrical rod of natural uranium 

 in water as a function of the rod diameter 
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Figure 6.7. Fast fission factor for a lattice of natural-uranium rods 

 with a diameter of 2.5 cm in water 
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6.5. The resonance escape probability 

 

In Section 5.6 it was indicated how the absorption in a resonance of the cross section can be 

calculated with the aid of the resonance integral according to (5.50). If we apply this to a single 

resonance and remember that for separate fuel and moderator the supply of the neutrons is given 

by the slowing-down density qbr in the moderator for an energy above the resonance, then the 

resonance escape probability pi for resonance i is given by 
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The slowing-down density and the flux per unit of lethargy φu = Eφ(E) above the resonance are 

connected through (5.35), so that 
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For the resonance escape probability for all resonances we then find 
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One calls the integral in this expression the effective resonance integral Ιeff. In practical 

situations, this integral not only depends on the scattering cross section σ0 per nuclear fuel atom, 

but also on the geometry of the unit cell (in the derivation given the spatial dependence of the 

flux was left out of consideration). Therefore, in the literature empirical relations have been 

developed for the effective resonance integral of the form 

 

  = /effI A B S M+  (6.13) 

 

with S the surface area of the fuel rod and M its mass. From this, one sees that with increasing 

rod diameter (so with decreasing S/M ratio) the effective resonance integral decreases and the 

resonance escape probability increases. This can be understood physically, as the absorption in a 

resonance will be concentrated at the surface of the rods, because of the very small free path 
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length of the neutrons at the resonance energy. The production of neutrons, however, takes 

place in the whole rod volume. Some empirical relations for Ιeff at room temperature are 

 

 2:      = 2.95 + 25.8  /      0.07 <  < 0.53 /eff
SU I S M cm g
M

 (6.14) 

 

 2
2 :      = 4.15 + 26.6  /      0.08 <  < 0.7 /eff

SUO I S M cm g
M

 (6.15) 

 

with Ιeff in barn if S in cm2 and M in gram. As a result of the Doppler effect (Sections 1.4 and 

4.4), the resonance integral also depends on the nuclear fuel temperature. 

 

6.6. k∞ as a function of the moderator-to-fuel ratio 

 

In Figure 6.8 the quantities ε, p, f and η are shown as a function of the moderator-to-fuel ratio 

for a graphite-moderated, natural-uranium system. 

 
Figure 6.8. Dependence of k∞ on the moderator-to-fuel ratio 

 

As a result of the opposite behaviour of p and f, there is an optimum moderator-to-fuel ratio 

where the value of k∞ is maximum. To the left of this optimum the reactor is undermoderated; 

the moderation then is insufficient and too many neutrons are lost by resonance absorption. To 

the right of the optimum the reactor is overmoderated; as too much moderator is present, there is 

too much parasitic absorption in this material. 
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From this figure one can also see that the moderator-to-fuel ratio is determining for the 

magnitude and the sign of the moderator temperature coefficient. If the temperature increases, 

the density of the moderator will decrease, in particular for water-moderated reactors. In an 

overmoderated reactor (to the right of the maximum), if the number of moderator nuclei 

decreases, the setpoint of the reactor will move to the left along the curve of k∞ and k∞ will 

increase, by which the reactivity increases. This yields a positive temperature coefficient. 

Therefore, one will choose the setpoint of the reactor to the left of the optimum, by which a 

negative temperature coefficient is obtained. 

 

6.7. Leakage factors     

 

From the one-group analysis (Section 3.1) we have already obtained an expression for the 

conservation factor of a reactor. Applied to the thermal neutrons this gives 
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in which Lt is the diffusion length as given by (3.15) for thermal neutrons. For the fast neutrons 

one obtains an analogous expression by performing a two-group calculation: 
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In the definition of the diffusion length for fast neutrons not only absorption of neutrons must be 

taken into account, but also neutrons that become thermal due to moderation, so that 

 

  =  /f s vsL D Σ  (6.18) 

 

with Σvs the macroscopic removal cross section for fast neutrons. In view of the analogy 

between the diffusion area and the moderation area, as shown in section 5.4 in the framework of 

Fermi age theory, Lf can be taken equal to τ½. 

The effective multiplication factor then conformably (6.2) becomes 
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with which the migration surface area M2 has been introduced: 

 

 2 22 =  + f tL LM  (6.20) 

 

This is a measure for the square of the crow-fly distance covered by a neutron in order to 

become moderated and subsequently absorbed as a thermal neutron (analogous to (2.32)). In 

light-water reactors the diffusion length for fast neutrons is much larger than for thermal 

neutrons, as a result of which fast leakage is also much more important than thermal leakage 

from the reactor (see Table 6.2). 

 
Table 6.2. Transport quantities of some moderators 

 

Material L t (cm) Lf (cm) M (cm) 

H2O 
D2O 
Be 
C 

   2.54 
        160  

 18.3 
    53.5   

5.1 
11.4 
10.1 
19.2 

5.7 
         160    

20.9 
56.8 

 

N.B. The value Lt depends on the purity of the material. 
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Chapter 7 

Reactor types 

7.1. Light-water reactors 

 

In the preceding chapters we have limited ourselves completely to the analysis of the reactor 

core: how the composition can be chosen and how one calculates the dimensions of a critical 

reactor for a given composition. Although the reactor core forms the heart of the nuclear power 

station, in terms of dimensions the core is only a modest part of the nuclear power station. The 

principle of light-water reactors has already been outlined in Chapter 1. 

The energy released during fission (mainly in the form of kinetic energy of the fission products; 

see Section 1.2, Table 1.4) is converted into heat in the nuclear fuel, as the fission products have 

a very small range (circa 5 μm). The heat developed in the fuel is removed by a coolant, which 

flows past the fuel elements. Whether or not through a steam generator, the heat is converted 

into mechanical energy in a steam turbine and finally into electrical energy in the generator 

(Figures 1.2 and 1.3). 

The efficiency with which the heat from the reactor is converted into electricity is mainly 

determined by the temperature of the steam and of the cooling water in the condenser. As the 

temperature in the reactor is limited, the efficiency is low, circa 33 %. For comparison, the 

efficiency of a modern conventional power station (coal or oil fired) amounts to 40 – 50 %. 

The boiling-water reactor 

In the boiling-water reactor (BWR), steam is produced in the core, so that a mixture of water 

and steam leaves the core. Above the core a steam-water separator is present. The separated 

water is mixed with the feed water of the condenser and pumped into the core again. The water 

in the core is under a pressure of circa 70 bar. At this pressure the saturation temperature is 286 
oC. Because of the high pressure, the core with accessories must be placed in a pressure vessel. 

The average volume fraction of steam in the core amounts to circa 35 %. At the outlet of the 

core this is considerably more (up to 70 %). The mass fraction of the steam (the steam quality) 

then is about 15 %. 

The fuel elements of a BWR consist of UO2 rods with lightly enriched uranium ( 4.5 %) in a 

zircaloy (zirconium alloy) cladding. In this way contact between uranium and cooling water is 

avoided, while the fission products (including the gaseous ones) remain confined in the nuclear 

fuel. A fuel element of a modern BWR consists of a rectangular lattice of e.g. 8x8 rods, which 

are assembled together in a can through which the cooling water flows. The diameter of the fuel 
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rods is circa 12.5 mm, the total length circa 4m. The distance between the rods (pitch) is circa 

16 mm. The fuel elements are placed in the core in clusters of four with a cross-shaped control 

rod between these elements. The control rods consist of boron carbide (B4C) and are moved into 

the core from below, as the steam-water separators and steam dryers are above the core. 

As at the top of the core more steam is present and thus less moderation, the axial flux 

distribution is asymmetric and the maximum is in the lower half of the core. This is 

compensated for in some degree by the control rods inserted from below. Modern fuel designs 

incorporate partial length rods, that leave more open, steam-water filled,  regions near the top of 

the core.  

The control rods mainly serve for compensation of the burn-up of the nuclear fuel. The actual 

control of the reactor takes place via control of the recirculation flow of the feed water. If one 

increases this flow, the vapour bubble fraction in the core decreases, by which moderation is 

improved. This increases the reactivity (larger moderator-to-fuel ratio) and with that the power 

of the reactor. At a higher power the vapour bubble fraction increases again until the reactivity 

has decreases to zero, after which a new steady state has been obtained at higher power. The 

core of a BWR is approximately cylindrical. For a 1200 MWe reactor the height of the core is 

circa 4 m and the diameter circa 4.5 m. The average power density, connected to the thermal 

power, amounts to circa 50 kW/ . Table 7.1 gives a number of characteristic data of a modern 

BWR nuclear power station. 

The pressurized-water reactor 

In another type of light-water reactor, the pressurized-water reactor (PWR), a much higher 

pressure of the cooling water (circa 150 bar) is applied, at which the boiling temperature is 343 
oC. As the temperature of the water leaving the core amounts to about 315 oC, boiling does not 

occur in the core. The high pressure is obtained by a pressure generator (pressurizer). The steam 

required for the turbine is generated in a separate heat exchanger, the steam generator. 

As a result of the better heat transfer in the core without boiling, the power density is larger than 

in a BWR: circa 100 kW/ . The size of the core is thus smaller than that of a BWR of equal 

power. For a larger heat-transfer area the nuclear fuel rods are thinner (circa 10 mm) and are 

closer together (circa 12.5 mm). The moderator-to-fuel volume ratio is thus smaller than in a 

BWR. The density of the water, however, is higher because of the absence of steam. 

A fuel element of a PWR consists of a lattice of e.g. 18x18 rods. In contrast with a BWR 

element, a PWR element is open; no can is applied. A number of fuel elements contain a finger-

shaped control rod, which replaces the nuclear fuel at about 20 positions in the element. The 

control rods consist of an Ag-Ιn-Cd alloy. For control of the reactivity change by burn-up and 

especially for compensation of the large overreactivity in a core with new fuel elements, boric 

acid is added to the cooling water and its concentration controlled. Table 7.2 gives a number of 

characteristic data of a modern PWR nuclear power station. 
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Table 7.1.Characteristic data of a modern BWR nuclear power station 

Plant 

Core thermal power  3579 MWt 

Electric output (gross/net)  1269/1233 MWe 

Plant efficiency  33.5% 

Core 

Active core height  3.76 m 

Core diameter  4.65 m 

Fuel inventory  138-t UO2 

Number of fuel assemblies  748 

Assembly pitch  15.2 cm 

Rod pitch  1.63 cm 

Average power density  56 kW/liter 

Fuel 

Fuel material  UO2 

Enrichment  Average 2.8%  235U (initial core 1.77-2.1%) 

Pellet dimensions (diam x height)  1.06 x 1.0 cm 

Assembly array  8 x 8 with fuel channel around fuel rods 

Total number of fuel rods  46.376 

Cladding material  Zircaloy-2 

Cladding outer diameter  1.25 cm 

Cladding thickness  0.86 mm 

Control 

Number of control rods  177 

Material  Boron carbide (B4C) 

Control rod type  “Cruciform” blades inserted hydraulically 

from below between sets of four assemblies 

Other control systems  Use of burnable poison 

Vessel 

Material  SA533 (or 533B) manganese molybdenum 

nickel steel with an inner layer of cladding 3 

mm of austenitic stainless steel 

Wall thickness  16.4 cm 

Vessel height  21.6 m 

Vessel inner diameter  6 m 

Vessel weight (including head)  885 t approximately 
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Coolant 

Material  Ordinary water (H2O)-two phase 

Pressure  7 MPa 

Number of recirculation loops  2 

Core coolant flow  13.2 Mg/hr 

Core coolant outlet temperature  288°C 

Core coolant inlet temperature  277°C 

Feedwater flow rate  1.94 Mg/sec 

Feedwater temperature  216°C 

Average coolant exit quality  14.7% steam by weight 

Fueling 

Type  Off-load, radial shuffling 

Refueling sequence  1/3 of core every 18 months or 1/4 core every 

12 months 

Shutdown for refueling  60 days 

Annual spent fuel discharge  32 t/yr 

Design fuel burnup  28,400 MWd/t at equilibrium 

 
 

Table 7.2.Characteristic data of a modern PWR nuclear power station 

Plant  
Thermal power  3425 MWt 

Electric output (gross/net)  1150/1100 MWe 

Efficiency  33% 

Core 

Active core (or fuel rod) height  3.7 m 

Core diameter (equivalent)  3.4 m 

Fuel inventory  101-t UO2 

Number of fuel assemblies  193 

Assembly pitch  30.4 cm 

Rod pitch  1.26 cm 

Average core power density  104.5 kW/liter 

Fuel 

Fuel material  UO2 

Enrichment  Three regions with 2.1, 2.6, 3.1% 

Pellet dimensions (diam and length)  0.82 x 1.35 cm 

Assembly array  17 x 17 (open type) 

Total number of fuel rods  50,952 

Cladding material  Zircaloy-4 
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Cladding outer diameter  0.95 cm 

Cladding thickness  0.6 mm 

Control 

Number of control clusters  53 

Number of control rods per cluster  20 

Absorber material  Ag – In – Cd 

Absorber rod cladding  304 stainless steel 

Control rod type  Cylindrical rods assembled into clusters 

inserted from above 

Other control systems (first core)  Burnable poison rods, borosilicate glass 

Vessel 

Material  SA533, Mg – Mo – Ni steel inner cladding 

Wall thickness  21.9 cm 

Vessel dimension (diam and height)  4.4 x 12.6 m 

Coolant 

Material  Ordinary water (H2O)-liquid phase 

System pressure  15.5 MPa 

Number of loops/steam generators  4 

Mass flow  15.9 Mg/sec 

Core inlet temperature  298°c 

Core outlet temperature  326°C 

Fueling 

Type  Off-load, radial shuffling 

Refueling sequence  1/3 of core every 12 months 

Shutdown period  30 days 

Annual spent fuel discharge  30.4 t 

Design fuel burnup  33,000 MWd/t 

 

7.2. The fuel cycle of a light-water reactor 

 

The fuel for a light-water reactor, uranium, is found as ore in the earth’s crust. At the current 

uranium mining locations, the ore contains 0.1 to 0.5 % uranium. The uranium has the chemical 

formula U3O8 and has a yellow colour (yellow cake). For use in a light-water reactor, the natural 

uranium (0.7 % 235U) must be enriched to  4-5 %. To this end, U3O8 is converted into UF6, 

which becomes gaseous already at low temperature. The gas can be enriched by pumping it 

through membranes at high pressure, whereby the slightly lighter 235U passes through the 

membrane somewhat easier (gaseous diffusion process; USA, France, former USSR). In the 

Netherlands (and in England and Germany), the ultracentrifuge process is applied. In this 

process, one brings the gas into very rapidly rotating centrifuges, by which the 238U moves more 
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to the outside of the centrifuge due to its larger mass and so a certain separation is 

accomplished. Especially for the gaseous diffusion process the separation factor per step is very 

small, so that the process must be gone through many times (cascade process) in order to obtain 

the desired enrichment. For the future one has expectations of laser enrichment, which is 

currently still in the development stage. 

From a feed stream F of natural uranium with percentage xF = 0.7 % 235U one obtains a product 

stream P with enrichment percentage xP and waste stream W with percentage xW. The total 

uranium flow and the flow of 235U are given by 

 

 F P W= +  (7.1) 

 

 F P Wx F x P x W= +  (7.2) 

 

From this it follows for the flow of enriched uranium that 

 

 F W

P W

x xP F
x x

−
=

−
 (7.3) 

 

The percentage of 235U in the waste 'tails' is about 0.2 %. If one wants to have an enrichment of 

4 % as final product, it follows that one can produce 0.13 kg enriched uranium per kg natural 

uranium. 

After enrichment the UF6 is converted into UO2, from which fuel pellets are sintered, which are 

finally assembled into a fuel element. 

In the reactor the burn-up takes place. Thereby 235U both undergoes fission and conversion into 
236U by neutron capture. From Table 6.1 it follows that the capture-to-fission ratio is about 0.16 

in a thermal reactor. In addition, neutrons are captured in the 238U, by which after β- decay 

ultimately 239Pu is formed, which is fissile by slow neutrons: 

 

 238 239 239 239
92 92 93 94U n U Np Puβ β− −

+ → ⎯⎯→ ⎯⎯→   

 

In Section 5.5 the conversion ratio C has already been defined as the ratio of the production rate 

of fissile nuclides to the consumption rate of fissile nuclides. This ratio appears to be 0.5 to 0.6 

for light-water reactors, also due to the resonance capture in 238U. Part of the formed Pu also 

undergoes fission in the reactor. Of the total energy produced from the nuclear fuel, about one 

third is coming from fission of Pu. 
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If a fuel element has been burned up sufficiently far, it will have to be replaced. In a 

pressurized-water reactor, one fourth to one third of the elements is replaced every year. The 

spent nuclear fuel then contains about 0.8 % 235U. 

With these data the uranium consumption of a reactor can be calculated. If a light-water reactor 

has produced 1000 MWyear of electricity (for such a yearly production a nuclear power station 

with a capacity of 1200 or 1300 Mwe is required with a load factor of 83 or 77 %, respectively), 

about 3000 MWyear of thermal energy has been produced. As 200 MeV or 3.2⋅10-11 J is 

released upon fission, this means burn-up of about 1150 kg. About two thirds of this is 235U, so 

that about 770 kg of 235U is burned up. If the initial enrichment was 4 % and after consumption 

0.8 % was left, about 24 tonnes of enriched uranium was required. This corresponds with about 

185 tonnes of natural uranium before enrichment. Compare this with the required amount of 

coal with a heating value of 30 MJ/kg. 

In addition to the burn-up of 235U, Pu has been formed and partially burned up. Of the total 

amount of energy produced, about 1000 MWyear will have been obtained by burn-up of Pu, for 

which circa 385 kg Pu must have been burned up. With a conversion factor of 0.55, 0.55 x (770 

+ 385) = 635 kg 239Pu has been formed. After usage, 250 kg is left, so that the spent nuclear fuel 

contains about 0.6 % Pu. The spent nuclear fuel further consists of circa 5 % fission products 

and 0.6 % 236U. By repeated neutron capture other transuranium elements are also formed. 

In a nuclear fuel reprocessing plant, the useful elements (U and Pu) can be extracted from the 

spent nuclear fuel and be used as fuel in the reactor again (possibly after re-enrichment). As the 

costs of this reprocessing are high and some countries are apprehensive of the spreading 

(proliferation) of the Pu for the production of nuclear weapons, reprocessing is no longer always 

applied. The amount of energy one can extract from spent nuclear fuel is limited by the amount 

of remaining nuclides that are necessary to be able to make the reactor critical. To this end, one 

could enhance the initial enrichment. However, one then encounters a technological limit: the 

radiation damage that occurs in the nuclear fuel during reactor operation and the formation of 

fission products, which swell the nuclear fuel. With the current nuclear fuels for light-water 

reactors one produces 3000 MWyear of thermal energy from 24 tonnes of enriched nuclear fuel, 

so that the degree of burn-up is about 45 MWd/kg. There is a tendency towards higher degrees 

of burn-up (70-100 MWd/kg), which makes it economical to start with a higher enrichment. 

7.3. Other reactor types 

 

Over the years a variety of reactor types have been developed in various countries with 

differences in construction, nuclear fuel, moderator and coolant. Currently, in addition to the 

light-water reactors, the following reactor types are of importance. 
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Gas-cooled reactors 

These have especially been developed and applied in England. Graphite is used as the 

moderator, which makes it is possible to suffice with natural uranium. These reactors are called 

magnox reactors, after the cladding material of the fuel rods, which consists of a magnesium 

alloy. CO2 is used as the coolant. In a later version (AGR = advanced gas-cooled reactor) 

enriched uranium is used in order to achieve a better nuclear fuel economy. A modern variant is 

the high-temperature reactor (HTR), in which graphite is used as the moderator also, but with 

helium as the coolant. Gas turbine In this reactor, the fuel cycle can be based on 233U/232Th, with 

which a high conversion ratio can be achieved. The fissile 233U is obtained from the thorium by 

the conversion reaction 

 

 232 233 233 233
90 90 91 92Th n Th Pa Uβ β− −

+ → ⎯⎯→ ⎯⎯→  

 

Heavy-water reactor 

This type has especially been developed in Canada. Heavy water (D2O) is applied as moderator. 

Due to the favourable neutron management, application of natural uranium is possible and one 

attains a relatively high conversion factor (circa 0.9). This type of reactor is called CANDU 

(Canadian deuterium-uranium) reactor. 

Fast breeder reactors 

The conversion ratio in a light-water reactor is 0.5 to 0.6, i.e. the production of new nuclear fuel 

is much less than its consumption. This is caused, among other things, by the relatively low 

value of the neutron yield factor η. For natural uranium this factor is 1.34 and for low-enriched 

uranium it is about 1.8. From Figure 7.1 one sees that for a thermal reactor 233U is a much more 

favourable fuel with η = 2.3. 

Of the neutrons released upon absorption in the nuclear fuel, one is required for continuation of 

the chain reaction, while neutrons are also lost as a result of parasitic absorption and leakage. 

Then circa one neutron remains, which can be used to convert a non-fissile nucleus into a fissile 

one. This should happen by addition of 232Th. This fuel cycle is applied in a HTR, but in a HTR 

no breeding of additional nuclear fuel occurs. 
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Figure 7.1. Neutron yield factor η as a function of the neutron energy for 

 some fissile nuclides 
 

If one wants to produce more nuclear fuel than one consumes, then an even higher value of η is 

necessary, which can only be realised with fast neutrons. In this case 239Pu is a good nuclear 

fuel. The fast breeder reactor is based on this principle. In order to keep the neutron spectrum 

fast, one avoids the use of light materials such as a moderator. Liquid metal (sodium,  lead or 

lead-bismuth) is applied as coolant, because it has favourable cooling properties and is not too 

light. The nuclear fuel consists of 239PuO2 mixed with UO2. The uranium serves as breeding 

material for the fissile 239Pu and thus does not have to be enriched. One can even use depleted 

uranium, which is left as waste in the enrichment of nuclear fuel for light-water reactors. If 

insufficient Pu is available for a first core, the reactor can also be started up with enriched 

uranium. After sufficient Pu has been produced, one can then feed other breeder reactors with it. 

The uranium requirement then becomes a factor 50 to 70 lower than for light-water reactors. 

As the microscopic cross sections for fast neutrons are small, a large nuclear fuel density is 

required. Therefore, 15 to 20 % Pu is applied. In the core of the breeder reactor a net 

consumption of nuclear fuel takes place (breeding factor < 1). By choosing a small core with a 

relatively large neutron leakage, a blanket of fertile material (depleted uranium) can be placed 
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around the core, where breeding occurs almost exclusively. In this way, the breeding factor for 

the whole reactor can be 1.2 to 1.4. 

For an economic application of the expensive nuclear fuel, a large power density is necessary: 

circa 500 kW/ . Due to the good cooling properties of liquid sodium this heat can be removed 

in a safe manner. The temperature of the sodium is much higher than applicable for light-water 

reactors. Therefore, a higher thermal efficiency can be achieved, comparable to that of 

conventional power stations. The heat of the sodium must be transferred to water to generate 

steam. As direct contact between sodium and water can result in a violent reaction, an 

intermediate cooling circuit with sodium, which is no longer radioactive, is applied, which 

transfers its heat to a steam circuit. 

Although the life of neutrons in a fast reactor is very short (10-7 to 10-6 s), here also reactor 

control is determined by the delayed neutrons, so that a fast reactor is no more difficult to 

control than a thermal reactor. As the fraction of delayed neutrons for Pu is much smaller than 

for 235U (see Table 4.1), the margin for deviations in the reactivity is much smaller. Opposite to 

this stands that the change of the reactivity during the fuel cycle in a fast reactor is much 

smaller, because the net fuel consumption in the core is much smaller than in a light-water 

reactor. 

Breeder reactors are not yet being applied commercially. Diverse prototypes have been built in 

various countries with capacities in the order of 300 MWe. Only in France a large breeder 

reactor (the Superphénix) with a capacity of 1200 MWe has been in operation. For the present, 

breeder reactors will not be able to compete with light-water reactors. Only if uranium becomes 

much more expensive, the breeder reactor with its small uranium consumption will acquire a 

more favourable position. 

Research reactors 

Reactors for research serve a completely different purpose from reactors for energy supply and 

for that reason differ strongly from the previously discussed reactors. A research reactor is used 

for the production of neutrons, which leave the reactor as, among other things, neutron beams 

and are used for e.g. research of matter, by studying the scattering of neutrons at a specimen. 

For a large intensity of neutrons a high leakage factor is required and thus a small core. By 

application of highly enriched uranium, core dimensions of e.g. 50x50x60 cm3 can be obtained. 

Highly enriched nuclear fuel (93 % enrichment) used to be made available for research reactors 

by the American government. This highly enriched material is coming from a program for the 

production of nuclear weapons. In connection with controlling the proliferation of material for 

nuclear weapons, lightly enriched (< 20 %) uranium must now be used in research reactors. This 

does not matter much for the value of η (see Figure 6.5), but it has some influence on the 

resonance escape probability. 
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Unpressurised light water is applied as moderator and coolant. Because of this, the maximum 

allowable temperatures are low, which limits the maximum attainable neutron flux in the core. 

With special constructions so-called high-flux reactors can also be realised. 

 

 

 

7.4. The international situation with regard to nuclear energy 

 

Currently about 450 nuclear power stations are in operation worldwide. The majority is of the 

light-water type with a lead for the PWR. As a result of the economic recession of the 1970s and 

the increased social resistance against nuclear energy, the expansion of nuclear energy has 

proceeded much slower than one expected in about 1970. There are, however, substantial 

differences per country. The largest number of reactors is in the United States (104 in 2002). 

Since 1993 no new nuclear reactors - have been put into operation. The nuclear power installed 

has been increased by plant upgrading and by lifetime extension of several plants. The share of 

nuclear energy in electricity production amounts to circa 20 % and is almost completely 

provided by light-water reactors (both PWRs and BWRs). Important suppliers are Westinghouse 

(PWR) and General Electric (BWR). 

In Russia and neighbouring countries nuclear energy is also applied at a large scale, although 

the share of nuclear energy in electricity production here also is modest. Two types are 

principally applied, viz. the Russian version of the pressurized-water reactor (VVER), which is 

exported to many other Eastern European countries, and a graphite-moderated, light-water 

cooled reactor (RBMK). The reactor in Tsjernobyl, where a serious accident happened in April 

1986, was of the latter type. The positive temperature coefficient of this reactor type (positive 

reactivity with increasing temperature of the coolant), played an important part in this accident, 

reason why this type is no longer built. 

Also Japan, which is almost destitute of natural resources, has a large number of reactors in 

operation (54 in 2002) and under construction (both PWR and BWR), built by own industry. It 

is operating the world's only two advanced reactors. 

In Western Europe the situation strongly differs from country to country. France is the 

undisputed leader with respect to nuclear energy, with a share of circa 80 % in electricity 

production (59 nuclear reactors in 2002). This means that not all nuclear power stations can 

operate at base load (constantly supplying the maximum power, irrespective of the electricity 

demand), but continuously have to adapt the power to the demand. In France only PWRs are 

built by the supplier Framatome. 

In Sweden (with own BWR supplier Asea-Atom, currently called ABB) and Switzerland circa 

40 % of the electricity is generated with nuclear energy, in Belgium even 60 %. Germany, 

Finland and Spain rely for some 30% on nuclear energy. 
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In England the gas-cooled reactor is predominantly applied. As this type has no development 

possibilities any more, the most recently built nuclear power station is of the PWR type. 

In the Netherlands only one nuclear energy station is in operation: Borssele since 1974, PWR 

type with a capacity of 477 MWe. After the accident with the Russian power station in 

Tsjernobyl, the government has postponed the decision for building at least two new power 

stations, each with a capacity of 900 to 1300 MWe. 

As the safety of reactors plays an important part in the discussion about nuclear energy, 

development projects of newer types of reactors such as the SBWR (Simplified BWR) are taken 

part in and developments with respect to a new generation of reactors with characteristic 

features of inherent safety are watched. In these reactors the safety mechanisms are based as 

little as possible on systems that must be activated (opening or closing valves, starting pumps, 

etc.), but as much as possible on systems that automatically come into operation on the ground 

of physical principles. 
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Appendix 

 

Definition of the solid angle 

The magnitude of a solid angle Ω is defined by the area that is cut out of a sphere with radius R, 

divided by the square of the radius of the sphere (see Figure A.1): 

 

 2

A
R

Ω =  (A.1) 

 

with which the magnitude of the solid angle is independent of the chosen radius of the sphere. 

The solid angle is measured in steradians, abbreviated ster. In view of the definition (A.1) this is 

not an actual dimension in the sense of the S.Ι. For the maximum possible solid angle, which 

comprises all directions, the area would become equal to the total surface area of the sphere 

4πR2, so that the maximum solid angle is 4π. 

 
Figure A.1. Definition of a solid angle 

 

Integrals over the direction Ω 

The directional vector Ω can be fixed with two scalar variables, a polar angle θ and an 

azimuthal angle ψ with 0 ≤ θ ≤ π and 0 ≤ ψ ≤ 2π (see Figure A.2). When varying these angles, a 

solid angle dΩ that is equal to the surface area of a sphere of unit radius is described: 

 

 sind d dθ θ ψΩ =  (A.2) 

 

With this, any integration over Ω can be written as a double integral over scalar variables. It is 

often easier to work with μ = cos θ instead of θ itself. Then 
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 d d dμ ψΩ =  (A.3) 

 

with -1 ≤ μ ≤ 1. 

 
Figure A.2. Integration over the direction Ω 

 

 

When working out integrals over Ω over the whole solid angle 4π the following integrals are 

useful (verify these by writing them as elementary integrations):  
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π

πΩ =∫  (A.4) 
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Ω Ω =∫  (A.5) 
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π
Ω Ω⋅ Ω =∫  (A.6) 

 

with a a constant vector (independent of Ω). When choosing a co-ordinate system for defining θ 

and ψ, it is practical to choose the polar axis, from which θ is measured, along the vector a. In 

the second and third integral the separated components of Ω are required: 
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sin cos
sin sin
cos

θ ψ
θ ψ
θ

⎛ ⎞
⎜ ⎟Ω = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (A.7) 

 

The nabla operator 

The nabla operator ∇ can be interpreted as a vector with components 

 

 , ,
x y z

⎛ ⎞∂ ∂ ∂
∇ = ⎜ ⎟∂ ∂ ∂⎝ ⎠

 (A.8) 

 

Application on the scalar field φ(r) = φ(x,y,z) yields a vector 

 

 , ,grad
x y z
φ φ φφ φ

⎛ ⎞∂ ∂ ∂
∇ = = ⎜ ⎟∂ ∂ ∂⎝ ⎠

 (A.9) 

 

In spherical co-ordinates with spherical symmetry: 

 

 
d
dr
φφ∇ =  (A.10) 

 

with direction equal to that of the co-ordinate vector r. 

Application of the nabla operator on a vector as internal product yields a scalar 

 

 yx z
vv vv divv

x y z
∂∂ ∂

∇ ⋅ = = + +
∂ ∂ ∂

 (A.11) 

 

Further, the operator of Laplace ∇ ⋅ ∇ = ∇2, which operates on a scalar and has a scalar as 

result, can also be formed 

 

 
2 2 2

2
2 2 2div grad
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 (A.12) 

 

In spherical co-ordinates with spherical symmetry: 
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In cylindrical co-ordinates with rotational symmetry: 

 

 
2

2
2

1 1d d d dr
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 (A.14) 

 

Divergence theory of Gauss 

 

 
V S

vdV n vdS∇⋅ = ⋅∫ ∫  (A.15) 

 

Expansion in Legendre polynomials 

Legendre polynomials Pn(μ) are defined by 

 

 ( )21( ) 1
2 !
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dP
n d

μ μ
μ

= −  (A.16) 

 

with P0(μ) = 1 

 P1(μ) = μ 

 P2(μ) = ½(3 μ2 – 1) 

 P3(μ) = ½(5 μ3 – 3 μ) 

 

A recurrent relation exists between the Legendre polynomials: 

 

 1 1( 1) ( ) (2 1) ( ) ( ) 0n n nn P n P nPμ μ μ μ+ −+ − + + =  (A.17) 

 

At the interval -1 ≤ μ ≤ 1 the Legendre polynomials are orthogonal: 
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This orthogonality enables the expansion of a real function f(μ), quadratic integration of which 

is possible at the interval -1 ≤ μ ≤ 1, but which further is arbitrary, in a series of Legendre 

polynomials: 
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in which the coefficients fn are given by 

 

 
1

1

( ) ( )n nf f P dμ μ μ
−
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An extension of such a series expansion is the expansion of a function that depends on the unit 

vector Ω in so-called spherical harmonics, which has been applied in the expansion of the angle-

dependent flux φ(Ω) according to (2.15). 
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