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INTRODUCTION 

Until recently there had not been much work done on the 

lower halides of thorium. Until about 1957 only a few 

authors had discussed the possibility of forming these lower 

halides. In 1949, Anderson and D' Eye (1) succeeded in pre­

paring the di- and tri-iodide of thorium by reduction of the 

tetraiodide with metallic thorium. At about this same time, 

Hayek, Rehner, and Frank (2) succeeded in preparing the di-

and tri-iodides, bromides, and chlorides of thorium. Accord­

ing to their work, the trihalides were prepared by reduction 

of the tetrahalide with metallic thorium at temperatures of 

500, 570, and 620°C. for the iodide, bromide, and chloride 

respectively. 

These trihalides were found to disproportionate to the 

tetra- and dihalides: 

2ThX3 - ThX4 + ThX2. (1) 

The disproportionation temperaturies for this reaction were 

found to be 550, 595, and 630°C. for the iodide, bromide, and 

chloride respectively. 

The dihalides were found in turn to disproportionate at 

higher temperatures to the tetrahallde plus metallic thorium: 

2ThX2 -» ThX4 + Th. (2) 
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The dlsproportlonatlon temperatures for this reaction were 

found to be 600, 640, and 670°C. for the di-iodide, bromide, 

and chloride respectively. Corbett and Clark (3) in 1963 

also prepared Thl2 and obtained evidence for the tri-iodide. 

Outside of the work done by Anderson and D'Eye and by 

Hayek et al. not much work was done on the lower halides of 

thorium prior to the later 1950's. This was undoubtedly due 

to the fact that the chemistry of the early 1950's was con­

cerned chiefly with aqueous chemistry. Since lower halides 

of thorium are expected to be unstable in this media, it is 

not surprising that very little information was obtained con­

cerning these lower valent compounds. 

More recently, however, a tremendous amount of research 

has been done in fused salt media, particularly in the fused 

alkali metal halides. One of the most popular of these 

solvents has been LiCl-KCl eutectic (44.4 wt.% LiCl). This 

solvent is especially attractive due to its low melting point 

(355°C.) and its great stability with respect to other metal 

chlorides. Since this solvent is exceedingly stable, it can 

support metal chlorides which would be unstable in aqueous 

media. With this possibility, the question as to which oxi­

dation states of thorium exist in this fused salt media has . 
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come to the fore. 

Inman, Bockrls ̂  (4) found upon anodic dissolution 

of thorium into the eutectlc melt, a value of 3.7 to 4.5 for 

n, the number of electrons given up per gram atom of thorium 

dissolved into the salt. Gruen et al. (5), in their review 

of the chemistry of the actlnide elements in the fused LlCl-

KCl eutectlc. Interpreted this work by Inman as indicating 

that only the plus four oxidation state of thorium exists in 

these solutions. To support this thinking, they dissolved 

one gram of ThCl^ in ten grams of LlCl-KCl eutectlc contained 

in a single-crystal sapphire crucible and placed a piece of 

thorium metal in contact with the melt at 500°C. for four 

hours. They found no change in the weight of the thorium 

metal indicating that no reaction between the tetrachloride 

and the metal had occurred. In direct contradiction to these 

data, however, Smlmov and Ivanovskil (6) claimed that in the 

temperature range of 510-897°C., an equilibrium between ThCl4 

and ThCl2 was occurring in the fused LiCl-KCl eutectlc: 

Th + ThCl4 2ThCl2. (3) 

In addition to these conflicting data, Parry and Chiottl 

(7), in their study of the oxidation and reduction of thorium 

in the two phase, LiCl-KCl eutectlc-liquid zinc system. 
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obtained data which Indicated that perhaps an equilibrium 

between the tetra and trichlorides was occurring In the 

system: 

3ThCl4 + %Th2Zni; 4ThCl3 + 8.5Zn. (4) 

It was with these conflicting pieces of data In mind that 

this Investigation was undertaken. 

The object of this research was to prepare. If possible, 

the lower chlorides of thorium, ThClg and ThCl2, and to deter 

mine the oxidation states of thorium In LlCl-KCl eutectic 

when In equilibrium with thorium-zinc alloys. Toward this 

end, a partial Investigation of the Th-ThCl^ phase diagram 

was carried out; the activity of ThCl^ In the salt as a func­

tion of temperature and composition was Investigated; the 

e.m.f. of the cell Th/LiCl-KCl-ThClx/Th2Zni7(s), Zn(4) as a 

function of temperature and ThCly content was measured; batch 

equilibrations of solutions of ThCl^ in the salt with the 

thorium-zinc alloy were carried out; x-ray diffraction pat­

terns of the salt were obtained; and the absorption spectra 

of thorium chlorides dissolved in methyl alcohol were deter­

mined . 

No reference to the Th-ThCl^ phase diagram can be found 

in the literature. The study of this system was undertaken 
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to determine which chlorides exist and the phase equilibria 

for these compounds as a function of temperature and composi­

tion. This Information should lead to a better understanding 

of the possible reactions of thorium In the LlCl-KCl eutectic, 

liquid zinc system. Two possible equilibria Involving 

thorium In this system are 

3ThCl4(ln LlCl-KCl) + ̂ Th^ZniyCs) # 4ThCl3(ln LlCl-KCl) 

+ 8.5Zn(je) (5) 
and 

ThCl4(ln LlCl-KCl) + %Th2Zni7(s) # 2ThCl2(ln LlCl-KCl) 

+ 8.5Zn(i). (6) 

In a quantitative evaluation of the behavior of the thorium 

chlorides In this system, a knowledge of the activity coeffi­

cients of the chlorides as well as their standard free 

energies of formation and the standard free energy of forma­

tion of Th2Znx7 Is essential. 

A great disparity exists In the literature among the 

various values for the activity coefficient of thorium tetra­

chloride In the salt. Smlmov and Xvanovskll (8), who meas­

ured the e.m.f. of the cell Th/ThCl4,LlCl-KCl/Cl2,C , claimed 

that solutions of up to 25 wt,% ThCl^ In the salt (mole frac­

tion 4.75 X 10"^) In the temperature range 480-893°C. behaved 

Ideally, i.e., the activity coefficient of ThCl4 relative to 
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pure (liquid) ThCl^ was unity. This would make their activity 

coefficient of the tetrachloride relative to pure solid ThCl^ 

about 10 for these same composition ranges at 500°C. Inman, 

Bockris al. (4) found, however, in their measurement of 

the e.m.f. of the cell Th/ThCl4,LiCl-KCl/LiCl-KCl-AgCl/Ag, 

that the activity coefficient of ThCl^ relative to pure solid 

ThCl4 was about 1 x 10'^ at 420°C. for a mole fraction of 

ThCl4 in the salt of 1,4 x 10"^. Yang and Hudson (9) also 

made measurements of this cell but in the temperature range 

500-550°C. They obtained values for YThCl4 (activity coeffi­

cient) relative to pure solid ThCl4 of about 1 x 10"^ for 

mole fraction values of 4.8 x 10"^ to 3.8 x 10"^ of ThCl4 in 

the eutectic. In an attempt to determine the activity coef­

ficient of ThCl4 in the LiCl-KCl salt the e.m.f, of the cell 

Th/ThCl4-LiCl-KCl//LiCl-KCl-3.3 wt.% AgCl/Ag was measured in 

the temperature range 450-650°C and at mole fraction values 

of ThCl4 in the salt ranging from 1.53 x 10"^ to 6.65 x 10"^ 

(0,102 to 32.4 wt.% ThCl4). 

The pertinent free energy data used in this work are 

summarized in Table 1. 
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Table 1. Free energy data for thorium chlorides and Th^Zniy, 
AF° = a + bT + cT log T calories/mole 

Compound 
a b c 

Temperature 
range, °K 

ThCl4 -286,400 129.2 -19.3 298-1100 

ThClg -231,800 96.9 -13.8 II 

ThCl2 -172,900 62.9 -9.2 II 

Th2Zni7 -145,000 72.1 -- 723-1173 

The standard free energy of formation of ThCl^ was esti­

mated using Glassner's (10) AS^gg and AH^gg, -72.9 calories/ 

mole-degree and -284,500 calories/mole respectively, and a 

mean ACp for ThCl^ of 8.4 calories/mole-degree for the tender 

ature range 298°-1100°K. This ACp was obtained by assuming 

that each chlorine in the compound contributes 6.5 calories/ 

mole-degree to the heat capacity of the compound and that the 

ACp for the formation of the compound is due only to the dif­

ference between this value and the heat capacity of free 

chlorine, 4.41 calories/degree-mole CI (10). The values of 

AFijhci^ at 500 and 700°C agree well with the values obtained 

from Glassner's much more complicated expression for AF° and 

also with those obtained by other investigators. The values 

of AF^hci^ at 500 and 700°C reported by various investigators 
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are listed in Table 2. 

Table 2. Values of ApÇhClz. in kilocalories/mole at 500 and 
700Oc 

Reference AF°,500°C AF°,700°C 

This work -229.2 -216.7 
Glassner (10) -229.6 -216.3 
Hamer (11) -228.3 -214.3 
Block and Wicks (12) -227.7 -213.0 
Smirnov (8) -222.4 -207.9 

^^ThClg estimated from Glassner's ^H^gg, -230 kilo­

calories/mole (10), a mean ACp of 6.0 calories/mole-degree, 

and -56.7 calories/mole-degree for AS^gg of ThClg, a value 

slightly modified from Glassner's. The values of AF^hcig 

obtained from this estimate at 500 and 700°C are -187.8 and 

-178.0 kilocalories/mole respectively; these again compare 

favorably with Glassner's (10) values of -188.2 and -178.3 

kilocalories/mole obtained from a much more complicated 

expression for AFThCl3* 

AF^hci2 estimated using a mean ACp of 4.0 calories/ 

mole-degree and a AS298 of -36.1 calories/mole-degree which 

was estimated from the analogous value for ZrCl2. The value 

for of ThCl2 at 700°C was obtained in this work and will 

be discussed later. These results for poor 

agreement with those of Smimov (6) who reported to have 
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determined AF^ci2 e.m.f. measurements of the cell 

Th/LiCl-KCl-1.4 wt.% ThCl4/Cl2,C in which he assumed all of 

the ThCl4 was completely reduced with thorium to soluble 

ThCl2. 

The equation for AF^jj2Zni7 S^-ven in Table 1 represents 

Chiotti and Gill's (13) values obtained from vapor pressure 

measurements. These results agree poorly with those obtained 

by Smirnov, Ivanovskii et al. (14). They use e.m.f. tech­

niques and found AFTh2Zni7 be expressed as 

AFiJh2Zni7 " -45,200 + 11.26T calories/mole, (7) 

assuming a four electron process. However, their measurements 

involved cells in which their thorium electrode was immersed 

in pure ThCl^ for long periods of time in the temperature 

range 480-893°C. With the possibility of the ThCl^ being 

reduced by the thorium to lower chlorides in their cell, it 

is not surprising that their results should differ from the 

values obtained from vapor pressure measurements. The vapor ̂  

pressure measurements are probably the most accurate and will 

be used in calculations in this work. 
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EXPERIMENTAL APPARATUS AND PROCEDURES 

Experimental Apparatus 

The experiments performed involving the thorium chlo­

rides and the thorium-zinc alloy can be divided roughly into 

two types: batch-type experiments done with small quantities 

of materials (about 50 grams total) and larger experiments 

involving greater quantities (>500 grams) of these materials. 

The smaller, batch-type experiments were done in tanta­

lum crucibles made from 20 mil, one inch O.D. tantalum tubing. 

After a drawn tantalum cap was welded to one end of the 

tubing, the charges were weighed and transferred to the cru­

cible. The crucible was then sealed by welding a tantalum 

cap to the top. All these operations were performed in a dry 

box under an atmosphere of argon. These crucibles were them­

selves sealed in stainless steel containers to prevent oxida­

tion and embrittlement of the tantalum at high temperatures. 

The whole container was then placed in a temperature-

controlled resistance furnace which was rotated 180° at a 

speed of about fifty oscillations per minute. This was done 

to break any interfacial films and to promote the attainment 

of chemical equilibrium. After the desired heating and set­

tling times were achieved, the assembly was water-quenched. 
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Thé charge was then cut open and the salt and metal phases 

sampled for subsequent chemical and metallographic analysis. 

The larger experiments were done with large quantities 

of the salt and metal in a cell of the type shown in cross-

section in Figure 1. The equipment used in association with 

this cell is shown in Figure 2. This equipment included (1) 

argon source, (2) argon purification train (calcium chips 

maintained at 630°Cè), (3) mechanical vacuum pump, (4) mercury 

monometer, (5) temperature controller and indicator, (6) 

variable speed stirring motor, and (7) potentiometer. 

The cell was constructed from Inconel-clad, 3% inch I.D. 

mild steel pipe. The top of the pipe was flanged and fitted 

to a brass cover plate which was adapted with Cenco vacuum 

couplings for air-tight, electrically-insulated insertion of 

a reference electrode, thorium electrode, tantalum stirring 

paddle, tantalum thermocouple well, and two sight glasses. 

The reference electrode used in these experiments was a 

silver-silver chloride electrode developed by Bockris et al. 

(15). The electrode was constructed from a 7 mm. pyrex tube 

with the bottom end blown into a very thin diaphragm. Into 

this tube was placed a few grams of KCl-LiCl eutectic con­

taining 3.3wt.%AgCl. A fifty mil silver wire was inserted 



Figure 1. Cross-sectional diagram of cell 

1. Mild steel with stainless steel jacket 
2. Bakellte Insulator 
3. Brass head 
4. Insulated bolts 
5. Cenco vacuum couplings 
6. "0" rings 
7. Cooling coils 
8. Tantalum crucible 
9. MgO insulator 
10. Thorium-saturated zinc phase 
11. Salt phase 
12. Tantalum stirring rod 
13. Tantalum thermocouple well 
14. Thorium electrode 
15. Silver-silver chloride reference electrode 
16. Sight glass 
17. To manometer 
18. To vacuum pump and argon source 
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Figure 2. Schematic diagram of cell and associated equipment 

1. Resistance furnace 
2. Cell 
3. External thermocouple for controller 
4. Indicating controller 
5. Mercury manometer 
6. Mechanical pump 
7. Toggle valves 
8. Argon tank 
9. Argon to sampling tubes 
10. Argon purification train 
11. Variable speed stirring motor 
12. Leads to electrodes 
13. Internal thermocouple 
14. Ice bath 
15. Potentiometer 

\ 
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Into this solution; the wire extended through a rubber stopper 

at the top end of the glass electrode. A small hole was made 

In the side of the pyrex tube of the reference electrode at a 

point Inside the cell just below the brass head to maintain 

equal pressure on both sides of the thin glass diaphragm. 

Since the concentrations of the eutectlc are essentially the 

same on either side of the thin glass membrane, the liquid 

junction potential at this membrane should be negligible. 

The thorium electrode was constructed by swaging high 

purity, 1/8" thorium rod onto the end of a 1/8" tantalum rod 

using a 5/32" tantalum sheath. This method provided a firm 

joint with good metallic contact between the tantalum and 

thorium. 

The stirring paddle was constructed from 1/4" tantalum 

rod onto which were welded small rectangular tantalum stirring 

fins. The tantalum rod extended up through a Cenco vacuum 

coupling to a variable speed stirring motor which was operated 

generally at a speed of 120 rpm. 

The thermocouple well, constructed from 5/32" tantalum 

tubing sealed at one end, extended into the zinc phase and 

served as the electrode lead to the thorium-zinc alloy. 

The tantalum crucible which contained the salt and metal 
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phases was separated from the bottom of the cell by an MgO 

spacer. The tantalum crucible was 3 1/8" in outside diameter 

and was rolled from 30 mil tantalum sheet. The crucible was 

butt-welded along the vertical edge and closed at the bottom 

with a spun tantalum cap which was heli-arc welded to the 

cylinder. 

The cell was heated with an eighteen ohm resistance fur­

nace, and the temperature was controlled to within + 0.25°C. 

using a Bristol electronic indicating controller. The cell 

was operated at slightly over one atmosphere of argon, which 

had been passed for purification purposes over calcium chips 

at 630°C., to avoid contamination from air and moisture. 

The various e.m.f.'s as well as the thermocouple e.m.f. 

were measured on a Rubicon B high precision potentiometer. 

Experimental Procedures 

Differential thermal analysis 

Samples to be studied by differential thermal analysis 

were first equilibrated in rocking-furnaces in tantalum 

crucibles which had been fitted at the bottom with a thermo­

couple well. After the samples had been given the desired 

heat treatment in the rocking furnace, thermocouples were 

inserted into the sample thermocouple well and into a nickel 
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block adjacent to the sample. The whole assembly was then 

placed in a resistance furnace. The temperature differential 

between the sample and the nickel block was recorded as a 

function of temperature both on heating and on cooling. The 

heating and cooling rates used in these experiments were about 

three to five degrees per minute. 

Measurement of ThCl^ activity 

For the measurement of the activity of ThCl^ in the LiCl-

KCl eutectic, the composition of the salt phase was varied by 

making additions of ThCl^ to the cell. The ThCl^ was added 

through a tantalum tube which was lowered into the cell 

through one of the sight glass ports. The argon pressure in 

the cell was increased enough so as to prevent the entrance 

of any air into the cell but not so much as to blow the added 

salt granules out of the cell. After the addition had been 

made and the sight glass replaced, the mixture was stirred 
y -

for five or ten minutes. 

Measurements of the e.m.f. developed between the thorium 

electrode and the silver-silver chloride reference electrode 

were made at the various salt compositions as a function of 

temperature. The thorium electrode was removed between 

measurements and cleaned by grinding with silicon carbide 
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paper and then etching with a solution of 1;1 HNO3 containing 

a small amount of Na2SlF5. This procedure served to provide 

a new, fresh thorium surface for each measurement. 

After the measurements were made, the salt was sampled 

by sucking up a few grams of the salt with a pipette bulb Into 

an argon-filled pyrex tube which had been Inserted Into the 

cell throu^ the sight glass port. These samples were then 

analyzed for their thorium content. 

E.m.f. measurement of the cell Th/LlCl-KCl,ThClx/Th2Zni7(s) 

In Zn(i) 

In the measurement of the e.m.f. between the thorium 

electrode In the salt and the thorium-zinc alloy, any salt or 

alloy additions which were needed were added through the sight 

glass port In the same manner as above. After the desired 

e.m.f. measurements had been made, both the salt and metal 

phases were sampled. The salt samples were then analyzed for 

their thorium content and the metal samples were mounted, 

polishedj and examined metallographlcally as a check on their 

composition. 

X-rav diffraction 

Samples to be x-rayed were crushed with a mortar and 

pestle in a dry box filled with argon and sealed in a 0.5 mm. 
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glass capillary. The capillary was then mounted in a Debye-

Scherrer camera and exposed to nickel-filtered copper Ke 

radiation for twenty-four hours. 

Absorption spectra 

Absorption spectra of samples dissolved in methyl alcohol 

in 1 cm, quartz cells were determined at wavelengths of 450 

to 220 millimicrons using a Model 14 Gary recording spectro­

photometer. 

Materials Preparation 

LiCl-55.6 wt.% KCl eutectic solvent 

The method employed in the preparation of this solvent 

was essentially that used successfully by Laitinen and others 

(16, 17). Analytical Reagent grade KCl and LiCl were mixed 

in the proper proportions in a pyrex tube. The salt was then 

heated under vacuum for four hours to remove moisture. After 

this, HCl gas was continuously passed through the salt while 

it was still solid, as it was melting, and after it was 

liquid. Purified argon gas was then flushed through the 

system to remove any residual HCl, and the molten salt was 

then pumped on again. After this treatment, the molten salt 

was siphoned through a sintered glass filter to remove any 
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foreign matter and collected In a cleaned tantalum crucible 

housed In a bell jar. The salt was then allowed to cool 

under vacuum to be ready for use when needed. A diagram of 

the apparatus used In the preparation of the LlCl-KCl solvent 

Is shown In Figure 3. The design and construction of this 

-apparatus was a joint effort of W. C. Robinson, Jr., J. S. 

Klepfer, and the author. 

AgCl-LlCl-KCl for silver-silver chloride reference electrode 

The first step In the preparation of this salt mixture 

was the preparation of good, dry silver chloride. AgNO^ was 

added to a solution of O.lH HCl to precipitate AgCl. This 

was done in a darkroom to prevent photochemical decomposition 

of the silver chloride by light. The silver chloride was 

then dried at 105°C. to constant weight and dissolved in LlCl-

KCl eutectlc. The mixture was heated to 525°C., stirred, and 

siphoned into 4 mm. I.D. pyrex tubes. The resulting cylinders 

did not wet the pyrex and were easily removed from the tubes 

in a dry box and stored in the dark in a desicator until 

needed for use in a reference electrode. The resulting cylin­

ders of AgCl-LlCl-KCl fit nicely into the 7 mm. tubing used 

for the reference electrode, thus facilitating preparation of 

the reference electrodes. The salt was analyzed for silver 



Figure 3. Diagram of apparatus for preparation of LiCl-KCl eutectic 
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chloride and found to contain 3.33wt.%AgCl (N^gCl = 1.319 x 

10"^). This concentration of silver chloride in the salt was 

used for all reference electrodes used. 

ThCl4 

The thorium tetrachloride used in these experiments was 

prepared by Krupp, Schmidt, and Peterson in their development 

of a process for the production of high purity thorium (18). 

The first step in the process is the conversion of the 

hydrated thorium oxalate to thorium dioxide by heating at 

300®C. for seven days. The thorium dioxide is then mixed 

with carbon and exposed to chlorine gas at 600°C. to form 

crude ThCl^. This crude product is sublimed three times onto 

a water-cooled, cold finger condenser, the second and third 

sublimations being done over thorium chips at 750°C.to remove 

the small amounts of iron, manganese, and chromium chlorides 

which otherwise would sublime with the thorium tetrachloride. 

The purified ThCl^ is then collected and stored in an inert 

atmosphere until needed. 

Zinc-10 wt.% thorium alloy 

The thorium-zinc alloy was prepared by sealing cleaned 

thorium and zinc in the proper proportions in a tantalum 

crucible under an argon atmosphere. The crucible was then 
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Itself sealed In a stainless steel crucible, equilibrated 

slightly above the melting point of the alloy (900°C.) In an 

oscillating furnace for eight to sixteen hours, and water-

quenched. The tantalum was then peeled from the alloy and 

the outer skin lathed off to remove the tantalum-thorium-

oxygen mixture present on the surface of the alloy. The 

alloy was then kept under argon until needed. 

Chemical Analysis of Salt Phase for Thorium 

For salts containing less than one weight per cent 

thorium, a spectrophotometrlc procedure was used (19). The 

complexlng reagent used Is commonly known as Thorln (2-(2-

hydroxy-3,6,-dlsulfo-l-naphthylazo)benzenearsonlc acid). The 

determinations were done at a wavelength of 545 millimicrons. 

For salts containing more than one weight per cent 

thorium, an E.D.T.A. (Ethylenedlamlnetetracetlc acid) titra­

tion using Xylenol Orange Indicator (20) was used. The pH 

was kept between 2.5 and 3.5, and the titration was done to 

a red-to-yellow color change end point. 



24 

EXPERIMENTAL RESULTS AND DISCUSSION 

Investigation of the Th-ThCl^ Phase Diagram 

Differential thermal analyses (D.T.A) were done on pre-

equilibrated mixtures of thorium and thorium tetrachloride to 

determine the Th-ThCl^ phase diagram. The thermal arrests 

found for the various composition mixtures are listed in 

Table 3. 

Table 3. Composition and thermal arrests of pre-equilibrated 
Th-ThCl4 mixtures 

Grams Grams N^h Thermal Pre-equilibration 
Th ThCl4 arrests 

T°C 
history 
days T°C days 

0.47 10.02 .065 709,743 830 3 555 4 
0.76 10.03 .114 712,739 775 1 520 1 
1.42 9.95 .190 708,737 775 1 520 1 
2.02 9.89 .242 710,714 840 2 530 ih 
2.85 9.92 .314 710,738 840 2 530 Ik 
3.60 9.84 .367 710,744,753 835 3 550 4 
4.65 9.84 .431 709,748 835 3 550 4 
6.08 10.12 .490 709,745 830 3 555 4 
1.95 10.21 .218 697,708,725 810 1% 515 1 
2.11 10.17 .250 700,711 800 1 500 1 
1.28 6.12 .292 697,710,727 800 1 500 1 
3.28 9.76 .351 700,711,743 810 ih 515 1 

The phase diagram indicated by these data is shown in Figure 

4. 

The freezing point of ThCl^ was found on cooling to be 

746°C. The accepted literature value (12) for the melting 



Figure 4. Tentative Th-ThCl4 phase diagram indicated by 
differential thermal analysis 
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point of ThCl4 is about 765°C; therefore it is possible that 

the upper thermal arrests on the phase diagram are somewhat 

low. The arrests at 710°C, however, were extremely strong and 

should be accurate within one or two degrees. The thermal 

arrests found at 698°C were not observed on cooling but only 

on heating after the samples had been held at about 665°C for 

several hours. These observations suggested that ThClg, as 

indicated by the phase diagram, is produced by a peritectoid 

reaction on cooling. Since solid-state diffusion processes 

are slow, the formation of ThClg should require an appreciable 

period of time. The arrests obtained on heating were small and 

showed only a small amount of heat being absorbed. 

These data indicate that on heating to 698°C, ThClg dis-

proportionates to ThCl2 and ThCl^, the equilibrium being 

2ThCl3 ThCl4 + ThCl2. (8) 

If there is little or no mutual solubility, as indicated in the 

phase diagram, all products and reactants are in their standard 

states, then AF° for this reaction is zero at 698°C. Therefore 

at this temperature, 

^FThCl4 + ̂ FThCl2 ° ̂^ThClg' 

From the values for AF^hCl^ ^^fhCl3 698°C given in 

Table 1, one obtains a value of -139.3 kilocalories/mole for 
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AF^hCl2 698°C. The values of AS^^g and ACp for ThCl2 dis­

cussed in the Introduction give the following equation for 

^SThCl2* 

AS^hCl2 ~ "58.9 +9.2 log T calories/mole-degree. (10) 

This equation gives a value of -31.4 calories/mole-degree for 

ASThCl2 698°C. Since AFThCl2 equal to AHfhCl2'TASThCl2» 

AHThCl2 698°C (971°K) is calculated to be -170.3 kilocal-

ories/mole. Therefore the general equation for AHjhCl2 be 

written ^ 

^"îhCla.T " '^1^012,971 + ACpdl 

(11) 
= -172,900 + 4.0T calories/mole. 

Equations 10 and 11 combine to give the following equation for 

AFThCl2* 

AFfhCl2 " -172,900 + 62.9T - 9.2T log T calories/mole. (12) 

This is the equation given for AFThCl2 the Introduction. 

To verify that ThClg can be formed by equilibrating ThCl4 

and thorium in the proper proportions at temperatures below 

698°C., a charge consisting of 4.10 grams of thorium and 18.59 

grams of ThCl^ was equilibrated at 800°C for twenty-six hours, 

water-quenched, and then equilibrated at 650°C for sixty-four 

hours. The resulting product was purplish-black in color with 



29 

very little remaining thorium evident. The product was 

heated under vacuum at 500°C for two hours to remove any unre-

acted ThCl^. The residue analyzed 33.2 wt.% CI and 66.3 wt.% 

Th, giving a chlorine to thorium ratio of 3.2 to 1. An x-ray 

powder pattern of this material showed some weak ThCl^ lines 

plus many other lines assumed to be those of ThClg. No lines 

which might be attributed to thorium were found. The measured 

26 values and the calculated d spacings of these lines as well 

as those of ThCl^ are given in Table 4. The ThClg lines could 

not be indexed and probably represent a unit cell of ortho-

rhombic or lower symmetry. 

The phase diagram shown in Figure 4 indicates that ThCl2 

decomposes peritectically at about 748°C. In an attempt to 

prepare this compound, a charge of 5.34 grams of thorium and 

9.70 grams of ThCl^ was equilibrated for twenty-six hours at 

800°C., water-quenched, and then equilibrated at 715°C for 

sixty-four hours. After equilibration 3.91 grams of thorium 

still remained. The fact that thorium remained in the prepar­

ation of ThCl2 indicates that this reaction is slow and that 

the reaction had not proceeded to completion. A dark, gray-

black material was found on the surface of the thorium metal. 

This material was analyzed for thorium and chlorine, The 
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resulting analyses were 76.3 wt.% Th and 24.0 wt.% CI compared 

with theoretical percentages of 76.6 wt.% Th and 23.4 wt.% CI 

for ThCl2. The chemical analyses obtained give a chlorine to 

thorium ratio for the material of 2.02 to 1. An x-ray powder 

pattern was taken of this material which Is believed to be 

ThCl2' The measured 26 values and the calculated d spaclngs 

are listed In Table 4. These lines could not be Indexed and 

probably represent a unit cell of orthorhomblc or lower sym­

metry. It should be noted here that both of these products, 

believed to be ThClg and ThCl2, formed from the reduction of 

ThCl^ with thorium, are very hygroscopic and necessarily were 

handled in a dry-box under an atmosphere of argon. 

Table 4. Measured 29 values and calculated d spaclngs of the 
thorium chlorides (S = strong, M = medium, W = weak) 

ThCl4 ThCls ThCl2 

RI* 26 d RI 26 d RI 26 d 

S 15.568 5.687 M 11.643 7.593 M 13.565 6.520 
VS 15.885 5.574 W 12.636 6.999 VS 15.616 5.670 
S 20.977 4.231 W 14.645 6.043 W 16.710 5.301 
S 24.031 3.700 M 15.309 5.782 s 17.750 4.992 
W 24.927 3,569 S 16.921 5,235 M 20,720 4.283 
S 26.315 3.384 W 18.798 4.716 S 22.246 3.993 
S 28.140 3.168 M 19.360 4.581 W 26.531 3.357 
s 31.956 2.798 S 25.276 3.520 S 27.165 3.280 
s 33.847 2.646 S 27.305 3.263 M 28.505 3,129 
VS 37.532 2.394 W 28.777 3.099 W 33.223 2.694 

*RI « relative intensity. 
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Table 4. (Continued) 

ThCl4 ThCl3 ThCl2 
RI 26 d RI 20 d RI 26 d 

W 39.520 2.278 M 29.572 3.018 M 36.335 2.470 
S 40.061 2.249 VW 30.222 2.954 M 38.680 2.326 
S 41.348 2.182 S 31.050 2.877 S 40.255 2.238 
M 42.524 2.124 VW 32.126 2.784 S 41.795 2.160 
M 43.341 2.086 VW 33.056 2.707 W 44.661 2.027 
M 45.588 1.988 VW 33.406 2.680 W 45.193 2.004 
W 46.610 1.947 S 34.212 2.619 W 46.369 1.957 
W 47.384 1.917 M 35.520 2.525 W 48.094 1.890 
M 51.793 1.764 W 36.404 2.466 w 48.858 1.862 
M 53.446 1.713 W 37.076 2.422 VW 49.858 1.827 
M 55.374 1.658 S 38.966 2.309 VW 51.858 1.762 
M 57.970 1.589 M 40.206 2.241 M 53.305 1.717 
W 60.891 1.520 W 40.485 2.226 W 55.369 1.658 
W 62.787 1.478 M 42.017 2.148 W 56.269 1.633 
W 63.421 1.465 S 44.935 2.015 W- 57.269 1.607 
w 64.504 1.443 S 46.690 1.944 W 58.685 1.568 
w 64.936 1.435 W 47.080 1.929 W 62.113 1.493 
M 66.436 1.406 VW 48.952 1.859 w 65.393 1.426 
M 67.103 1.394 W 52.624 1.738 w 67.785 1.394 
VW 68.288 1.372 VW 54.803 1.674 w 69.537 1.351 
W 69.124 1.358 W 56.111 1.636 w 71.123 1.324 
M 70.489 1.334 W 57.324 1.606 w 72.257 1.306 
M 75.024 1.265 W 59.176 1.560 VW 73.765 1.283 
M 78.000 1.224 W 60.395 1.531 VW 76.416 1.245 
M 84.431 1.146 W 61.294 1.511 VW 77.416 1.232 
W 85.695 1.133 M 62.076 1.494 
W 85.765 1.132 W 69.596 1.350 
W 89.545 1.094 W 72.556 1.302 
W 90.375 1.086 W 73.924 1.281 
W 91.986 1.071 
W 96.610 1.032 
W 100.731 1.000 

Two other types of experiments were tried in attempts to 

prepare ThCl2. It was anticipated that ThCl2 would be insol­

uble in LiCl-KCl eutectic since ZrCl2 has been found to be 
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very insoluble in this salt (4,21,22) and thorium often 

behaves very much like zirconium in its chemistry. The first 

experiment involved addition of 15.4 grams of a Zn-45.3 wt.% 

Mg alloy to a system in which a solution of ThCl^ in LiCl-KCl 

eutectic was in contact with a Zn-8.1 wt.% Th alloy. The 

system contained a solution of 131.4 grams of ThCl^ in 350 

grams of LiCl-KCl in contact with 241 grams of the Zn-8.1 wt.% 

Th alloy. The charge was stirred for three hours at 500°C and 

allowed to settle for one hour. The salt was then sampled and 

analyzed for thorium and magnesium. The resulting analyses 

were 2.95 wt.% Th and 1.86 wt.% Mg. The possible reactions 

which might occur under these conditions are 

ThCl4 + 8.5Zn + 2Mg -» %Th2Zni7 + 2MgCl2 (13) 

ThCl4 + %Mg - ThCla + %MgCl2 (14a) 

and ThCl4 + Mg - MgCl2 + ThCl2 i (14b) 

If Reaction 13 were the only reaction that occurred, the final 

salt analysis should have been 10.6 wt.% Th and 1.54 wt.% Mg; 

if only Reaction 14a occurred to form soluble ThClg, the 

thorium content of the salt should have remained unchanged at 

about 17 wt.% Th; if only Reaction 14b occurred, the final 

salt analysis should have been 3.72 wt.% Th and 1.75 wt.% Mg. 

The actual analyses of 2.95 wt.% Th and 1.86 wt.% Mg found in 
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the salt indicate that a reaction such as Reaction 14b 

occurred. 

A gray-black precipitate was found at the salt-metal 

Interface. Since a fair amount of LlCl and KCl would be 

expected to be present with the precipitate from the LlCl-KCl 

solution, a direct chlorine and thorium analysis to give the 

amount of chlorine associated with the thorium In the material 

could not be made. However, KCl Is essentially Insoluble In 

methyl alcohol whereas LlCl Is soluble In this solvent (23). 

The gray precipitate was also found to be soluble to an apprec­

iable extent In the methyl alcohol. The presence of thorium 

was shown by the appearance of a red-orange color In the alco­

hol when Thorln, a material which forms a red-orange complex 

with thorium (19), was added to the alcohol solution. A solu­

tion of methyl alcohol into which the gray precipitate had 

been extracted was analyzed for lithium, chlorine, and throlum. 

The chemical analysis of the alcohol solution was found to be 

1.28 mg. Li/ml., 8.35 mg. Cl/ml., and 5.85 mg. Th/ml. A one-

to-one atom correspondence between lithium and chlorine was 

assumed and the remaining chlorine gave a Cl/Th ratio of 2.02 

to 1, Indicating that the precipitate might be ThCl2. (This 

method of analysis was checked with ThCl^ in methyl alcohol 
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and found to be valid). However, an x-ray powder pattern 

taken of the precipitate showed, in addition to LiCl and KCl 

lines, a group of lines which do not match those attributed to 

ThCl2 in Table 4. The measured 20 values and the calculated d 

spacings for the diffraction lines of this precipitate are 

given in Table 6. These data could be explained if a salt of 

the type ThCl2*xLiCl*yKCl were being precipitated from the 

LiCl-KCl solution. The other possibility, that this precip­

itate is ThOCl2, was considered, but, as will be discussed 

later, was shown not to be the case. 

In the second type of experiment designed to precipitate 

ThCl2 from the LiCl-KCl eutectic, calcium metal was equili­

brated with solutions of ThCl^ in the LiCl-KCl eutectic at 

500°C. The details of the two such experiments done are given 

in Table 5. 

Table 5. Data for the reduction of ThCl^ in LiCl-KCl with 
calcium at 500°C 

Exper- Initial charge (gms.) Final salt 
iment LiCl-KCl ThCl^ Ca Thermal history analysis, 

wt.% Th 

4-5-1 22.378 17.438 1.898 Rocking-26 hrs. 14.9 
Settling-^ hr. 

4-8-2 19.963 2.539 0.270 Rocking-28 hrs. 3.65 
Settling-3/4 hr. 
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Again there are three possible reactions which might occur: 

If Reaction 15a were the only reaction that occurred, the 

thorium content of the salt should have remained at the ini­

tial levels of 27.2 and 7.0 wt.% Th for the two experiments. 

If Reaction 15b were the only reaction that occurred, the 

weights used in these experiments were such that the salts 

should have been essentially stripped of thorium. If Reaction 

16 were the only reaction that occurred, the final salt anal­

yses should have been 14.9 and 3.6 wt.% Th respectively for 

the two experiments. These latter figures agree well with 

those actually found. This would indicate that in this system, 

Reaction 16 occurred. An x-ray diffraction pattern taken of a 

dark material found in experiment 4-5-1 showed, however, in 

addition to thorium lines, a group of lines which match very 

closely the pattern obtained from the precipitate formed from 

the reduction of the ThCl^ with the zinc-magnesium alloy. The 

measured 20 values and the calculated d spacings of this pat­

tern are given in Table 6 along with the d spacings of LiCl, 

KCl, and Th as listed in the A.S.T.M. file. 

ThCl4 + %Ca - ThCla + %CaCl2 

ThCl4 + Ca CaCl2 + ThCl2^ 

and ThCl4 + 2Ca -» Th + 2CaCl2. 

(15b) 

(15a) 

(16) 
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Table 6. Measured 20 values and calculated d spaclngs of the 
precipitates formed from reduction of ThCl4 in LiCl 
KCl with Zn-45.3 wt.% Mg and with Ca (S = strong, 
M = medium, W = weak, RI = relative intensity) 

ThCl4(in LiCl-KCl) ThCl4(in LiCl-KCl) 
+ Zn-Mg product + Ca product LiCl KCl Th 
RI 20 d RI 20 d d d d 

S 14.077 6.286 VS 13.956 6.340 2.967 3.146 2 .93 
S 16.317 5.428 S 16.198 5.467 2.570 2.224 2 .54 
S 23.234 3.825 S 22.986 3.866 1.817 1.816 1 .79 
S 27.279 3.296 VW 24.128 3.686 1.550 1.573 1 .52 
S 28.557 3.123 M 27.088 3.289 1.484 1.407 1 .463 
VS 30.185 2.958 VS 28.378 3.142 1.285 1.284 1 .268 
S 31.752 2.816 VS 30.346 2.943 1.179 1.113 1 .162 
S 32.942 2.717 VW 32.829 2.726 1.149 1.049 1 .135 
VS 35.013 2.561 VW 34.418 2.603 1.049 1 .035 
S 36.039 2.490 S 34.985 2.562 0 .977 
W 36.927 2.432 VW 36.859 2.436 0 .897 
VS 40.648 2.218 s 40.528 2.224 
S 43.115 2.096 w 42.957 2.104 
VW 45.881 1.976 VW 45.943 1.973 
VW 47.179 1.925 VW 47.125 1.927 
VW 49.413 1.843 VW 49.398 1.843 
VS 50.246 1.814 s 50.228 1.815 
VW 52.575 1.739 M 50.906 1.792 
VW 54.299 1.688 VW 54.418 1.684 
VW 57.905 1.591 VW 58.653 1.572 
VW 58.793 1.569 M 59.616 1.549 
VS 59.654 1.549 s 60.435 1.530 
VS 62.559 1.484 M 62.651 1.481 

w 63.858 1.456 M 63.470 1.464 
VS 66.541 1.404 W 66.533 1.404 
VS 73.873 1.282 M 73.731 1.284 
VS 81.657 1.178 W 81.623 1.178 
VS 84.236 1.148 W 

W 
W 

82.747 
84.166 
85.387 

1.165 
1.149 
1.136 
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These data indicate that after Reaction 16 had occurred to 

give thorium metal, a reaction between this metal and the 

remaining ThCl^ occurred to form a film on the surface of the 

thorium. This material and the precipitate formed from the 

reduction of ThCl^ in LiCl-KCl with the zinc-magnesium alloy 

are evidently the same. 

An effort was made to prepare ThOCl2 to check that none 

of the groups of x-ray diffraction lines listed in Tables 4 

and 6 are those of ThOCl2. A charge of 19.77 grams of ThCl^ 

and 13.99 grams of Th02 was heated at 800°C for fifty-five 

hours and then water-quenched. The reaction here should be 

ThCl4 + Th02 - 2ThOCl2. (17) 

The resulting product was composed of white, fluffy, acicular 

crystals. Wylie ̂  (24) found similar characteristics 

for ThOl2. They reported that their ThOl2 was "a felted mass 

of colorless, highly acicular crystals". This description 

aptly described the ThOCl2 formed in this experiment. The 

ThOCl2 analyzed 72.3 wt.% Th and 22.0 wt.% chlorine which com­

pare well with the theoretical percentages: 72.7 wt.% Th and 

22.2 wt.% CI. An x-ray powder pattern was taken of the 

ThOCl2. The measured 26 values and the calculated d spacings 

are given in Table 7. From the large number of lines it would 
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Table 7. Measured 26 and calculated d spaclngs for ThOCl2 
(S • strong, M = medium, W • Weak, RI » relative 
intensity 

RI 26 d RI 26 d RI 26 d 

M 9.734* 9.083 VW 37.845* 2.376 S 59.875 1.543 
VS 11.327* 7.808 VW 39.149 2.299 M 60.772 1.523 
W 12.592 7.024 S 40.301* 2.235 W 61.578 1.505 
W 13.265 6.669 M 41.282 2.185 W 61.940 1.497 
VW 15.017* 5.894 M 41.808 2.159 M 62.922 1.476 
M 15.748* 5.623 M 42.222 2.138 M 64.501 1.443 
M 18.607* 4.764 M 44.032* 2.055 M 66.685 1.401 
M 19.610* 4.524 W 45.842 1.978 W 67.449 1.387 
VS 22.670* 3.919 M 46.912 1.935 VW 68.580 1.367 
S 25.005* 3.558 M 48.404 1.879 M 70.117 1.341 
VW 26.361 3.378 M 48.807 1.864 M 71.051 1.326 
S 27.097* 3.276 M 49.498 1.841 VW 72.485 1.303 
W 29.463 3.029 M 50.124 1.818 VW 72.815 1.298 
M 30.361 2.941 M 50.599 1.802 W 73.628 1.286 
M 31.805 2.811 M 51.443 1.775 M 74.353 1.275 
M 32.646 2.740 M 52.027 1.756 VW 75.248 1.262 
S 33.864* 2.644 VW 52.679 1.736 M 76.482 1.244 
M 34.649 2.586 S 53.790 1.703 VW 77.365 1.232 
M 34.877 2.570 M 54.751 1.675 VW 78.762 1.214 
S 35.317 2.539 M 56.173 1.636 M 80.101 1.197 
S 36.390 2.467 VW 57.235 1.608 VW 81.977 1.174 
S 36.887 2.435 VW 59.113 1.561 VW 82.532 1.168 
VW 83.930 1.152 W 91.107 1.079 VW 100.343 1.003 
W 85.227 1.138 W 92.564 1.066 VW 101.867 0.992 
VW 86.283 1.126 M 93.521 1.057 M 103.900* 0.978 
VW 88.037 1.108 M 97.624* 1.024 M 105.704* 0.966 
W 90.283 1.087 M 98.664* 1.016 W 108.212 0.951 

^Represents average of split line. 
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appear that either the unit cell is very large or is of very 

low symmetry. Some of the higher d spacing lines listed in 

Table 7 are averages of diffraction lines which showed split­

ting, probably due to an absorption effect. 

Absorption spectra in methyl alcohol of ThCl^, and the 

prepared ThClg, ThCl2, and ThOCl2 as well as those of the 

precipitates formed by reduction of ThCl^ in LiCl-KCl with 

zinc-magnesium and with calcium were determined and are shown 

in Figure 5. This was done mostly as a qualitative check on 

the similarity or dissimilarity of these materials and not as 

an effort to determine absorption coefficients. Thorium 

tetrachloride shows small peaks at 356, 324, 270, and 254 

millimicrons (nM) and a large peak at 226 nfi. The ThOCl2 on 

the other hand shows no maxima in the wavelength span investi­

gated. The ThClg prepared from the reduction of ThCl^ with 

thorium metal shows small peaks at 361 and 290 nu and appar­

ently a much larger peak somewhere below 220 m|i. The ThCl2 

prepared from the reduction of ThCl^ with thorium shows peaks 

at 361 and 317 mu with a somewhat larger one at 241 m^i. It is 

interesting to note that the precipitates formed from the 

reduction of ThCl4 in LiCl-KCl with Zn-45,3 wt.% Mg and with 

calcium give spectra similar to that of the ThCl2 prepared by 



Figure 5. Absorption spectra of thorium chlorides in methyl alcohol 
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reaction of thorium and ThCl^ even though the x-ray patterns 

were different. This would Indicate that the alcoholated 

species In solution are the same for all three cases. The 

fact that the precipitates and the ThCl2 give the same absorp­

tion spectra but different x-ray patterns suggests that the 

precipitate Is some salt of the type ThCl2*xLiCl'yKCl. The 

x-ray diffraction patterns of this salt and of ThCl2 would be 

expected to be different, but their absorption spectra In 

methyl alcohol could be the same. 

Activity Coefficients of Thorium Chlorides 

In LlCl-KCl Eutectlc 

As was mentioned In the Introduction, In order to make 

calculations as to the extent of Reactions 5 and 6, the activ­

ity coefficients of the thorium chlorides in the LiCl-KCl 

eutectlc as a function of temperature and composition must 

be known. The activity coefficient of ThCl^ in KCl-LlCl rela­

tive to pure solid ThCl^ was determined for various composi­

tions and temperatures by measuring the electromotive force 

(e.m.f.) of the cell 

Th/ThCl4,UCl-KCl//UCl-KCl,3.3wt.% AgCX/Ag (18) 

as a function of temperature and of ThCl^ concontratlon. The 
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compositions studied varied from 0.1 to 32.4 wt.% ThCl^, and 

the temperature ranged from 450 to 650°C. The starting weight 

of LlCl-KCl eutectic In the tantalum crucible amounted to 500-

600 grams. It Is assumed that the reaction occurring at the 

thorium electrode In this cell may be represented as 

Th(s) + 4C1" - ThCl4(ln LiCl-KCl) + 4e" (19) 

and that at the silver electrode as 

4AgCl(ln L1C1-KC1) + 4e" 4Ag(s) + 4 CI'. (20) 

Therefore the overall reaction may be written 

Th(s) + 4AgCl(ln L1C1-KC1) - ThCl4(ln L1C1-KC1) + 

4Ag(s). (21) 

The e.m.f. of Reaction 21 may be expressed as 

o • o RT , , RT . 
^eas " ®rhCl4 " ®AgCl ' 4) ^Cl4 "T ^AgCl 

+ ̂ Ag-Ta (22) 

where 

E° = standard e.m.f. for the pure solid chloride 

R = universal gas constant 

T = temperature, °K 

F = Faraday's constant 

A = activity • Ny " (mole fraction)(activity coeffi­

cient) 

^Ag-Ta " thermal e.m.f. generated between silver and 

tantalum electrodes. 
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All the quantities on the right-hand side of Equation 22 are 

known except a^hCl^* therefore, by measuring the e.m.f. as a 

function of mole fraction ThCl^ in the salt and of tempera­

ture, the activity coefficient of ThCl^ in the salt relative 

to pure solid ThCl^ may be obtained as a function of concen­

tration and temperature. 

In Table 8 are listed, along with their respective refer­

ences, the known quantities used in Equation 22 to calculate 

yrhCl4' 

Table 8. Quantities used in Equation 22 to calculate YThCl4 

Quantity 
(in volts) Value Investigator 

Ref. 
number 

®ThCl4 3.009-6.776xl0-^°K This work 

%C1 1.126-2.920xl0-^°K Yang and Hudson 17 

RT/âr In a^gci 

i'Tisimi 
.0396-3.761x10" V k Yang and Hudson 17 

^Ag-Ta -.0011+.041xl0-4T°K Gray 25 

Equation 22 may be rearranged to give: 

log - log N^c14 2.3RT |^\hCl4 ' ®AgCl ^AgCl 

®Ag-Ta " ®meas^ (2^) 
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or, substituting the appropriate values of Table 8 Into 

Equation 23; 

%C14 + 

êas.̂  • 

In Tables 9 and 10 are tabulated the e.m.f.'s of experiments 

3-93-8 and 3-101-9 at various temperatures and compositions 

as well as the activity coefficients of ThCl^ calculated from 

Equation 24. 

In light of the phase diagram work, reduction of the 

ThCl^ In the salt by the thorium electrode must be considered. 

It is possible that at the thorium electrode, the following 

sequence of reactions occur: 

Th + 2Cr -» ThCl2 + 2e' (25) 

ThCl2 + CI" - ThClg + e" (26) 

ThClg + CI" - ThCl4 + e" (27) 

or, overall, Th + 4C1" ThCl^ + 4e". (28) 

If this be the case, then Equation 21 does Indeed represent 

the cell reaction and Equations 22-24 are valid. It is with 

reservation, however, that these activity coefficients are 

calculated. 

It may be noted here that relative to pure liquid 

ThCl4 may be calculated from the above values through the 



Table 9. Data for the cell Th/ThCl4-LlCl-KCl//LiCl-KCl-3.3 wt.% AgCl/Ag* 
- (Experiment 3-93-8) 

Total 
ThCl4 
added 
Cms.) 

Wt.% Th 
nominal 

Wt.% Th 
analysis 

Sample 
weight 
Cms) 

Wt.% 
ThCl4 NThCl4 T°C 

Emeas 
(volts) ,(S)® 

^ThCl4 

VThCl4 
xlO+3 

0.56 .0645 — — 0.106 1.75x10-4 501.5 1.6033 3.252 0.560 

1.17 0.135 0.13 2.12 0.209 3.45x10-4 500.8 1.5916 3.223 0.598 

2.26 0.282 0.26 2.14 0.419 6.92x10-4 492.1 1.5845 3.242 0.573 
I I  501.0 1.5801 3.218 0.606 
I I  555.0 1.5512 3.082 .828 
I I  583.5 1.5330 3.018 .960 
I I  

638.5 1.5057 2.904 1.248 

4.04 0.47 0.455 2.18 0.733 1.21x10-3 505.5 1.5679 3.208 .620 

8.49 1.01 0.98 2.16 1.571 2.62x10-3 501.3 1.5561 3.184 .655 

10.85 1.27 1.28 2.21 2.062 3.45x10-3 500.9 1.5524 3.200 .632 
I I  504.2 1.5502 3.190 .646 
I I  

577.9 1.5070 2.998 1.006 
I I  585.2 1.5030 2.981 1.045 
I I  640.2 1.4704 2.860 1.380 

28.68 3.26 3.24 1.98 5.220 8.98x10-3 505.1 1.5314 3.114 .770 

^Initial weight of LiCl-KCl eutectic was 527.8 grams 



Table 10. Data for the cell Th/ThCl4-LiCl-KCl//LiCl-KCl-3.3 wt.% AgCl/Ag* 

Total 
ThCl4 
added 
(OTS.) 

Wt.% Th 
nominal 

Wt.% Th 
analysis 

Sample 
weight 
(sms.) 

Wt.% 
ThCl4 NThCl4 T°C Emeas 

(volts) 

-log 

36.46 4.14 4.15 2.44 6.68 1.057x10-2 440.0 1.5655 3.245 .569 
I I  450.0 1.5608 3.214 .612 
I I  . 473.8 1.5446 3.143 .720 
I I  491.5 1.5352 3.093 .807 
I I  511.8 1.5219 3.038 .917 
I I  540.0 1.5048 2.967 1.Q79 
I I  540.4 1.5040 2.966 1.082 

• 
I I  574.0 1.4831 2.888 1.294 
I I  595.0 1.4710 2.842 1.440 
I I  620.6 1.4548 2.789 1.626 
I I  646.7 1.4393 2.738 1.828 

102.74 10.50 10.57 2.80 17.05 2.97x10-2 450.1 1.5413 3.177 .665 
I I  

455.0 1.5397 3.161 .690 
I I  

456.0 1.5384 3.158 .695 
I I  485.2 1.5208 3.067 .857 
I I  497.4 1.5110 3.031 .932 
I I  525.4 1.4938 2.953 1.114 
I I  546.3 1.4808 2.898 1.265 
I I  568.1 1.4649 2.844 1.432 
I I  601.0 1.4454 2.767 1.710 
I I  608.9 1.4400 2.750 1.778 
I I  

649.3 1.4148 2.664 2.170 

^ *Initial weight of LiCl-KCl eutectlc was 509.9 grams. 



Table 10. (Continued) 

Total 
ThCl4 
added Wt.% Th 

nominal 
Wt.% Th 

Sample 
weight 

Wt.% 
ThCl4 NThCl4 T°C Emeas 

(volts) 

-log 

v(s) 
^ThCl4 

YThCl4 
xl03 

166.23 15.10 14.90 24.35 24.00 4.51x10-2 448.2 1.5342 3.054 .883 

454.1 1.5263 3.037 .918 

485.4 1.5083 2.956 1.107 

498.6 1.4999 2.923 1.193 

523.7 1.4849 2.865 1.364 

546.7 1.4705 2.814 1.534 

555.1 1.4610 2.796 1.600 

584.9 1.4445 2.736 1.837 

602.3 1.4347 2.702 1.987 

619.9 1.4234 2.670 2.139 

652.7 1.4009 2.613 2.440 

241.7 20.2 20.1 2.61 32.4 6.65x10"% 451.2 1.5200 2.924 1.192 
II 480.7 1.5011 2.846 1.426 

501.0 1.4865 2.795 1.603 

510.8 1.4808 2.772 1.691 
II 541.3 1.4614 2.702 1.986 
II 568.3 1.4436 2.645 2.265 
II 

595.0 1.4246 2.592 2.560 
II 627.3 1.4053 2.532 2.940 
II 

656.6 1.3857 2.482 3.298 

00 
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relationship 

where superscripts (i) and (s) denote liquid and solid refer­

ence states respectively and AHf^g and Tf^g are the heat of 

fusion and melting point of ThCl^. Substituting the values of 

14,690 calories for AHf^sion and 1043°K for Tf^slon measured 

in this laboratory by G, J. Gartner (26) into Equation 29 

gives the following relationship between the two v's: 

L'-S = l°8 7^hCl4 + 3.078 . ̂  . (30) 

The measured e.m.f.'s as a function of temperature for 

the various compositions are presented in Figure 6. These 

e.m.f.'s were fitted by a least squares treatment to an equa­

tion of the type E = a + bT°K. Substitution of these expres-

(s ) 
s ions into Equation 24 leads to equations for log at 

various compositions of the form log ^ (c/T) + d. The 

results of these calculations are given in Table 11. 

These results agree well with the few measurements that 

Yang and Hudson (9) made for this system in the temperature 

range of 500-550^0. For example they found for N^hCl^ values 

of 4.8 X 10-4, 1.90 X 10-3, ^nd 3.77 x 10-3 at 500°C., 

YxhCl4 values of 0.71 x 10-3, 0.79 x 10-3, 1.18 x 1Ô"3 



Figure 6. Electromotive force in volts of cell Th/ThCl4,LiCl-KCl//LiCl-
KCl,AgCl/Ag as a function of temperature (°C) for various 
compositions of ThCl^ in the salt (see Tables 9 and 10) 
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respectively. For the same mole fractions the values of 

Y-jhci^ at 500°C found in this study would be 0.60, 0,63 and 

0.66 X 10"3 respectively. 

Table 11. Least squares equations for measured e.m.f.'s and 
resulting equations for log 

NThCl4 E(volts) 
(s) 

log Y %hci4 

6.92 X 10-4 2.001 - 5.444 X 10-4% -1609/% - 1.139 

3.45 X 10-3 2.007 - 5.872 X 10-4% -1722/% - .975 

1.057 X 10-2 2.001 - 6.106 X 10-4% -1609/T - .988 

2.97 X 10-2 2.006 - 6.420 X 10-4T -1716/% - .804 

4.51 X 10-2 1.993 - 6.383 X 10-4% -1438/% - 1.060 

6.65 X 10-2 1.993 - 6.535 X 10-4% -1450/% - .922 

One can see from the values of Ygi^gi^ in Tables 9 and 10 

that the temperature dependence of Y^hCl4 is not very large. 

This has been found by Flehgas and Ingraham (27) to be the 

case for many metal chlorides in fused salt systems. They 

interpreted this phenomenon as meaning that the extent of com­

plex formation in the salt is not very temperature-dependent. 

The activity coefficient of ThClg in the LiCl-KCl eutec-

tic relative to the pure solid should be about the same as 

that of UCI3 since their ionic radii are very nearly the same 
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(28): 1.14 angstroms for as compared with 1.11 angstroms 

for iT^^c This similarity of activity coefficients of UCI3 and 

ThClg has been borne out in work by Parry and Chiotti (7) who 

obtained data which indicated that the ratio of the activity 

coefficients of UCI3 and ThClg in the eutectic was very close 

to one. The activity coefficient of UCI3 in LiCl-KCl has been 

found to be very nearly unity (29,30) in the temperature range 

of interest in this study (500-700°C); therefore a value of 

one will be used for the activity coefficient of ThClg in this 

investigation. 

Attempts were made to determine the activity coefficient 

of ThCl2 relative to the pure solid in the LiCl-KCl eutectic. 

It was anticipated that ThCl2 would be relatively insoluble in 

the LiCl-KCl eutectic since ZrCl2 has been found to be very 

insoluble in this salt (4,21,22) and thorium often behaves in 

its chemistry like zirconium. According to the free energy 

data in Table 1, the chief product obtained upon equilibration 

of ThCl^ in LiCl-KCl with thorium metal should be ThCl2, the 

reaction being 

ThCl4(in LiCl-KCl) + Th - 2ThCl21' . (31) 

It was thought, therefore, that if solutions of ThCl^ in 

LiCl-KCl were equilibrated with thorium metal, the final salt 
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analysis should represent the solubility limit of ThCl2 in the 

salt. At saturation, the activity of ThCl2 will be one and 

since 

aThCl2 NThci2^ThCl2' (3%) 

'YThCl2 can be calculated from the mole fraction of ThCl2. 

However, when experiments of this type were attempted, the 

thorium metal was found to have become coated with a gray-

black film, probably ThCl2, and the thorium content of the 

salt was found to have changed only slightly from the initial 

value. Table 12 gives the experimental data for these exper­

iments . The weight of unreacted thorium was obtained by 

washing, drying, and weighing the thorium which remained 

after equilibration. The difference between the initial 

amount of thorium and the amount of thorium remaining in 

these experiments can not be accounted for by the increase 

in thorium content of the salt alone. This could be due to 

a failure to find and weigh all of the unreacted thorium but 

is probably due to the precipitation of ThCl2» 

It will be assumed that Reaction 31 did not go to com­

pletion, but that the equilibrium 

ThCl4 + ThCl2 ZThClg (33) 

is attained, where ThCl2 is an insoluble precipitate on the 



Table 12. Data for équilibrations of ThCl^ in LiCl-KCl with thorium 

Experi­ Initial charge (gms.) Initial 
Heat* 
treatment 

Final Wt. 
ment LiCl-KCi ThCl4 Th wt.% Th 

based on 
ThCl4 
added 

Heat* 
treatment 

sait 
analysis 
wt.% Th 

unreacted 
thorium 
(gms.) 

3-152-1 30.170 0.770 0.853 1.55 700°C-26hrs. 1.60 0.756 

4-5-2 33.794 1.084 0.916 1.93 700°C-48hrs. 1.95 0.701 

4-8-1 29.197 1.045 1.129 2.11 700°C-30hrs. 2.24 0.940 

3-151-1 29.950 0.700 0.575 1.41 700°C-24hrs. 1.58 0.231 

3-151-2 30.386 1.398 2.73 800°C-26hrs. 2.89 0.674 

*Water-quenched. 
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surface of the thorium metal. With these assumptions, calcu­

lations of YThCl2 be made. It can be shown, that under 

these conditions, 

Ni - Nxh,R = NThCl4 + ̂ "\[lO'^ NrhCl^ 

arid NThCl2 " NrhClt " 2% + 2NTh,R + Nrh (35) 

where = initial mole fraction of ThCl^ in the salt 

%h,R ~ number of moles of thorium reacted divided by 

total number of moles of salt 

%h ~ total mole fraction of thorium at equilibrium 

^ThCl^ = mole fraction of ThCl^ in the salt at equilibrium 

and 

NThCl2 ~ roole fraction of ThCl2 in the salt at equilibrium. 

The derivations of these two equations are given in 

Appendix A. Thus from the experimental data and Equations 34 

and 35, N'j'hci2 be calculated. From NThCl2» ^hCl2 be 

calculated since 

NThCl2'^ThCl2 " ̂ O*) 

The results of these calculations are given in Table 13. 

The scatter in the calculated values of >^1x012 quite large. 

It would appear from these data that YxhCl2 at 700°C is about 

1 X 10^. 



Table 13» Results of calculations of YThci2 equilibrations of ThCl^ in LiCl-
KCl with thorium in Table 12 

Initial Moles Total mole 
Experiment T°C mole thorium fraction ^hClo ^ThCl? 

fraction reacted thorium, 
ThCl4,Ni =NTh,R %h 

3-152-1 700 3.80 X 10-3 0.773 X 10-3 3.95 X 10-3 0.09x10-3 l . l lxl04 

4-5-2 700 4.78 X 10-3 1.52 X 10-3 5.00 X 10-3 0.92x10-3 1.09X103 

4-8—1 700 5.33 X 10-3 1.55 X 10-3 6.45 X 10-3 1.74x10-3 5.75x10% 

3-151-1 700 3.48 X 10-3 2.76 X 10-3 3.84 X 10"3 2.79x10-3 3.94x10% 

3-151-2 800 6.86 X 10-3 1.15 X 10-3 7.02 X 10-3 0.10x10-3 1.0xl04 
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In an attempt to determine YThCl2 another manner, a 

solution of 5.26 grams of ThCl^ in 32.92 grams of the LiCl-

KCl eutectic was equilibrated with a large excess of thorium 

metal shavings (21.49 grams). These shavings were packed into 

one end of the tantalum crucible so that when the crucible was 

tipped upside down, the shavings remained in place. This mix­

ture was equilibrated at 700°C for 17 hours in a rocking 

furnace. The charge was then settled upside down for 1% hours 

at 700°C to separate the salt solution from the metal. The 

thprium content of the salt was found to have increased to 

8.84 wt.% Th from an initial concentration of 8.53 wt.% Th. 

The thorium shavings, which were covered with gray-black 

material; were removed from the crucible in a dry box and 

placed into another tantalum crucible which contained 23.20 

grams of the LiCl-KCl eutectic. This charge was then equili­

brated at 700°C for 10 hours. If enough ThCl^ Tiad formed on 

the surface of the metal in the initial equilibration to still 

saturate this salt, the final analysis of this salt should be 

representative of the solubility limit of ThCl2 in LiCl-KCl 

at 700°C. The final salt analysis was 0.318 wt.% Th. This 

amount of thorium in the salt as ThCl2 represents a mole 

fraction of ThCl2 of 7.75 x 10"^. If the solution is indeed 
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saturated with ThCl2, this value gives 1,29 x 10^ for YThCl2 

at 700°C in the LiCl-KCl eutectic. This value is within the 

range of values calculated in Table 13; therefore for this 

investigation 1 x 10^ for YxhCl2 700°C will be used. Since 

at 500°C, the solubility of ThCl2 in the salt should be lower 

than it is at 700°C, 1 x 10^ will be used for 'VxhCl2 500°C. 

Equilibria between Solutions Consisting of ThCl^ in LiCl-KCl 

and Th2Zni7 in Zinc 

Calculations of the extent of reduction of ThCl^ by the 

thorium-zinc alloy in the LiCl-KCl-liquid zinc system can be 

made from the free energy data for the thorium-zinc alloy and 

the thorium chlorides and the activity coefficients of the 

thorium chlorides in the salt. In the LiCl-KCl-liquid zinc 

system, there are four possible reactions that may be written 

involving thorium chlorides and the thorium-zinc alloy; 

Ic ThCl4 + 1/6 Th2Zni7 - 4/3 ThClg + 2.83Zn(i) (37) 

lie ThCl4 + 1/2 Th2Zni7 - 2ThCl2 + 8.5Zn(i) (38) 

III. 2ThCl3 + l/2Th2Zni7 - 3ThCl2 + 8.5Zn(i) (39) 

IV. 2ThCl3 -» ThCl4 + ThGl2. (40) 

However, it can be shown that these four relations represent 

only two independent equilibria. Furthermore, at equilibrium. 
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Nph = NxhCl4 + NThCl3 + ̂ hCla 

= %hCl4 + '{^) %<Cl4 (41) 

where N = mole fraction 

Ki = equilibrium constant for reaction i 

Kyi = activity coefficient ratio for reaction i 

The derivation of Equation 41 is given in Appendix B. 

From Equation 41, the free energy data for Reactions I 

and II, and the activity coefficients of the thorium chlorides 

in the salt, the mole fractions of ThCl^, ThClg, and ThCl2 

that should be present at equilibrium can be calculated as a 

function of the total mole fraction of thorium. It should be 

noted here that shifting of the equilibria towards the lower 

chlorides is favored by dilute solutions. If Ky is a con­

stant, which should be a fairly good assumption for dilute 

solutions, then % is also a constant. % of Reaction I may 

be written 

where n denotes number of moles. Thus astn, the total number 

of moles of thorium chlorides plus LiCl-KCl eutectic Increases, 

the number of moles of ThCl^ must decrease (with a corres­

ponding increase in the number of moles of ThClg), The same 
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argument applies for Reaction II. 

In Table 14 are listed, for 500 and 700°C, the standard 

free energy values for the compounds involved in Reactions I 

and II, the equilibrium constants for these reactions, and 

the calculated K ratios appearing in Equation 41. 

Table 14. Free energy data and equilibrium constants for 
Reactions I and II at 500° and 700°C 

T°C 
^^ThCl4 
kcal 

A^ThCls 
kcal 

AFThCl2 
kcal 

AFTh2Zni7 
kcal 

Kl 
Kyi 

Kll 
KYII 

500 -229.2 -187.8 -144.8 -89.5 8.6x10'2 1.63x10-8 

700 -216.7 -178.0 -139.3 -75.1 10x10-2 3.1x10"* 

The values of the ratio Kn/Kyu indicate that not much ThCl2 

should be present at equilibrium. The ratio NThCls/NrhCl^ 

500 and 700°C was calculated as a function of total mole 

fraction of thorium in the salt and is plotted in Figures 7 

and 8 for these two temperatures. 

Experiments were done involving batch-type equilibrations 

between various initial compositions of ThCl^ in the LiCl-KCl 

eutectic salt and an excess of the zinc-10% thorium alloy at 

500 and 700°C. The initial charges and the thermal history of 

the equilibrations are presented in Tables 15 and 16. The 

500°C equilibrations were rocked approximately twenty-four 



Figure 7o Theoretical and experimental NphClg/NThCl^ ratio at 500°C as a 
function of total thorium mole fraction at equilibrium. See 
Table 15 
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Figure 8. Theoretical and experimental I^rhCl3/NThCl4 ratio at 700°C as a 
function of total thorium mole fraction at equilibrium. See 
Table 16 
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Table 15. Initial weights, thermal history, and resulting analyses of batch 
equilibrations of salt with excess Zn-10 wt.% Th alloy at 500°C 

Initial 
charge 
gms. 

Initial wt. 
ThCl4 

, %  Thermal 
history* 

Final 
wt.% 
Th 

**Th 
final 

NThClj/ 

NThCl4 
NThCl3^ 

NThCl4 

56.49 salt 
55.7 alloy 

3.00(1.86% Th) 21 
1% 

hrs.R 
hrs.S 

2.025 4.94x10-3 .492 .0578 

53.26 salt 
54.5 alloy 

4.05(2.51% Th) 20 
2 
hrs. R 
hrs.S 

2.69 6.7x10-3 .352 .0444 

46.88 salt 
46.3 alloy 

5.75(3.56% Th) 24 
2% 

hrs.R 
hrs.S 

3.81 9.63x10-3 .343 .0463 

48.44 salt 
49.8 alloy 

6.90(4.28% Th) 36 
2 
hrs.R 
hrs.S 

4.54 1.16x10-2 .299 .0414 

47.12 salt 
45.4 alloy 

10.43(6.46% Th) 21% hrs.R 
1% hrs.S 

6.82 1.80x10-2 .266 .0414 

19.54 salt 
17.3 alloy 

21.90(13.60% Th) 23 hrs.R 
4% hrs.S 

14.18 4.2x10-2 .184 .0344 

*R = rocking, S = settling. 



Table 16. Initial weights, thermal history, and resulting analyses of batch 
equilibrations of salt with excess Zn-10 wt.% Th alloy at 700°C 

Initial 
charge 
gms. 

Initial wt.% 
ThCl4 

Thermal 
history* 

Final 
wt.% 
Th 

NTh 
final 

NrhCl]/ 

NThCl4 

KN -
ta "fs 
%hCl3 

NThCl4 

21.27 salt 
20.4 alloy 

3.81(2.36% Th) 24 
24 

hrs.R 
hrs oS 

2.54 6.30x10' 3 .563 .074 

21.40 salt 
22.2 alloy 

6.07(3.76% Th) 24 
2 
hrs.R 
hrs.S 

4.20 1.07x10" 2 .667 .1084 

21.66 salt 
22.2 alloy 

7.32(4,54% Th) 24 
16 

hrs.R 
hrs. S 

5.01 1.29x10" 2 .492 .0798 

17.60 salt 
21.2 alloy 

22.60(14.02% Th) 12 
1 
hrs.R 
hr.S 

14.50 4.32x10" 2 .149 .0265 

17.86 salt 
36.7 alloy 

27.30(16.94% Th) 16 
2 
hrs.R 
hrs. S 

17.26 5.42x10" 2 .075 .0117 

16.18 salt 
22.4 alloy 

30.70(19.05% Th) 16 
2 
hrs.R 
hrs. S 

19.42 6.36x10' •2 .053 .0078 

*R = rocking, S = settling. 
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hours at 700°C before being given the heating treatment at 

500°C indicated in Table 15. 

The chemical analyses of the salts resulting from the 500 

and 700 C equilibrations are also given in their respective 

tables 0 From the known weights of starting materials and the 

final salt analyses, the ratio N;i;hCl3/^ThCl4 was calculated. 

These calculated ratios are presented in the tables and are 

also plotted on Figures 7 and 8 for comparison with the values 

of the predicted ratios. It should be noted here that thorium 

is insoluble in this salt at the temperatures being considered 

here; therefore any thorium found in the salt must be present 

as thorium chloride. This agreement indicated that the 

thermodynamic data used to calculate these ratios are reason­

ably accurate and that, indeed, ThCl^ and ThClg are the pré­

dominent thorium chlorides in solution when the salt is in 

equilibrium with the thorium-zinc alloy. 

Study of the Cell Th/LiCl-KCl-ThClx/Th^Zniy in Zinc 

In an attempt to observe the change in relative amounts 

of ThCl4 and ThClg with changes in the total thoritm concen­

tration in the salt, the e.m.f. between a thorium electrode 

and a zinc solution saturated with Th2Znx7 was measured at 
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various thorium concentrations in the salt. It was anticipa­

ted that the measured e.m.f.'s should give some information as 

to the oxidation state of thorium in the salt since the half-

cell reactions occurring should be 

Th + xCl" -» ThClx + Xe" (43) 

and ThClx + 8.5Zn + Xe" -» ^Th^Zniy. (44) 

Therefore the measured e.m.f. of the cell should be related to 

the standard free energy of formation of Th^Zniy by the ex­

pression 

- xà É . (45) 

Thus from the measured e.m.f. of the cell and the known val-

o 
ues of ABph^Zniy» the average oxidation state of the thorium 

in the salt should be obtained. Table 17 gives the experi­

mental results of experiments 3-109-10. Figure 9 shows the 

resulting e.m.f.'s measured as a function of temperature at 

various thorium concentrations in the salt. The curves 

observed indicate x to be about three at high concentrations 

of thorium in the salt and about four at low concentrations. 

This is just opposite to the expected trend discussed in the 

previous section. However, if the curves truly reflect a 

change in the oxidation state of thorium in the salt, this 

should also be reflected in the e.m.f. between the thorium 
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Table 17. Data and electromotive force measurements of cell 
Th ThClx-LiCl-KCl/Th2Zni7 in Zn (Experiment 3-109 m 

Total ThCl^ Wt.% Th Wt.% Th Sample Bimeas 
added (gmsy nominal analysis wt.(gms) T°C (volts) 

0.431 .049 .009 2.74 453.6 .506 
ri .008 2.92 505.4 .439 
ti .009 3.19 556.8 .398 
ft .019 2.65 608.0 .390 
ti .054 3.29 652.4 .365 

1.548 .181 .112 2.79 450.0 .523 
» .178 2.87 504.1 .446 
II .168 2.81 553.4 .425 
II .185 2.68 620.3 .404 

3.146 .372 .267 2.08 444.8 .525 
II .276 2.76 499.0 .522 
II .390 2.68 553.0 .419 
II .316 2.55 619.0 .396 

6.448 .760 .760 2.55 448.6 .509 
II .728 2.74 504.4 .455 
II .731 2.46 554.2 .438 
II .683 2.27 615.7 .408 

17.917 2.148 2.01 2.78 467.0 .514 
II 2.00 2.65 495.9 .476 
II 2.02 2.63 551.4 .429 
II 2.07 2.85 614.9 .408 

30,779 3.70 3.36 5.21 436.4 .599 
ri 3.23 2.73 470.0 .577 
II 3.27 5.30 507.0 .500 
II 3.25 2.79 538.7 .447 
ri 3.24 5.52 567.1 .431 

3.32 5.98 624.7 .411 
61.005 7.35 6.65 5.29 436.3 .605 

II 6.61 2.62 470.2 .596 
II 6.50 5.03 508.5 .532 
II 6.49 5.38 561.3 .502 
ri 6.43 5.30 621.5 .510 

221.10 20.4 444.2 .616 
If 499.6 .539 
fi 

• - 557.4 .529 
fr 615.4 .520 

^Initial charge: 547 grams LiCl-KCl, 207 grams zinc-
7.6 wt.% thorium alloy. 
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Figure 9. Electromotive force In volts of cell Th/LlCl-KCl-ThClx/ 
Th2Zni7 In Zn as a function of temperature for various 
thorium concentrations In the salt (see Table 17) 
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electrode and a silver-silver chloride reference electrode. 

These e.m.f.'s were measured for the same thorium concentra­

tions and temperatures and are shown in Figure 10. The fact 

that these e.m.f.'s give straight lines as a function of tem­

perature whereas the e.m.f.'s measured between the thorium and 

the thorium-zinc electrodes show such a pronounced curvature 

with temperature suggests that something was happening either 

in the thorium-zinc alloy or at the salt-metal interface. In 

an attempt to check whether or not something was happening in 

the thorium-zinc alloy, a sample of the alloy was held at 

500°C for a week. No change could be detected in the micro-

structure of the alloy, indicating that the cause for the 

observed variation in the e.m.f.'s measured between the thor­

ium and thorium-zinc electrodes did not lie in the alloy. In 

this experiment, the thorium concentration in the salt did not 

increase over the nominal composition based on ThCl4 additions 

as would be expected if the ThCl^ were being reduced to lower 

chlorides. In addition, the e.m.f.'s measured between the 

tliorium electrode and the silver-silver chloride reference 

electrode at the various thorium concentrations are very close 

to those measured for similar thorium concentrations when only 

ThCl4 was present in the salt such as in experiments 3-93-8 



Figure 10. Electromotive force in volts of cell Th/LiCl-KCl-ThClx/ 
LiCl-KCl-3.3 wt.% AgCl Ag as a function of temperature 
for various thorium concentrations in the salt 
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and 3-101-9 (Tables 9 and 10). This indicates that something 

at the salt-metal interface was inhibiting reduction of the 

ThCl4 by the alloy and also causing the anamolous e.m.f.'s 

between the thorium and thorium-zinc electrodes. 

When the experiment was concluded, the charge was sliced 

vertically, A layer about 1/8" thick of gray material was 

found between the metal and salt phases. This layer was prob 

ably composed of Th02 or ThOCl2. This material was probably 

the cause of the anamolous e.m.f.'s measured between the 

thorium and thorium-zinc electrodes and also probably pre­

vented the reaction between the alloy and the ThCl^ in the 

salt. 

Two other separate experiments were made using the cell 

Th A^iCl-KCl-ThCl4/Th2Zni7 in Zn but with very high initial 

ThCl^ concentrations. The ThCl^ concentration was 32.4 wt.% 

in the first experiment and 35.5wt.%in the other. The 

e.m.f.'s measured as a function of temperature are given in 

Table 18. 

These data were treated by a least squares method to 

give the following equation for the temperature-dependence 

of the measured electromotive force E, in volts: 

E = 0.7927 - 3.974 X 10'VK . (46) 
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This line and the experimental points are presented in Figure 

11. 

Table 18. Electromotive force in volts of cell Th/ThCl^, 
LiCl-KCl/Th2Zni7(s) in Zn(l) as a function of 
temperature (°C) 

Wt. % ThCl4 in salt T°C E(volts) 

0.5074 
0.4892 
0.4828 
0.4736 
0.4650 
0.4542 
0.4478 
0.4330 
0.4260 
0.5066 
0.5000 
0.4881 
0.4780 
0.4780 
0.4582 
0.4483 
0.4291 

^Initial charge: 249 gms. ThCl^, 519 gms. LiCl-KGl, 
200 gms. Zn-10 wt.% Th. 

^Initial charge: 112 gms. ThCl^, 200 gms. LiCl-KCl, 
320 gms. Zn-10 wt.% Th. 

From these data and the use of n " 4 in Equation 45, 

AFjh2Zni7 found to have the following temperature depend­

ence: 

AFÇh2Znx7 " -146,300 + 73.3T calories/mole. (47) 

32.4* 
ti 
ri 

rt 

f t  

If 
ri 

ri 

ri 

35.5* 
fi 
ri 

ri 

t i  

t i  

II 
I I  

445.3 
483.4 
515.1 
520.8 
552.4 
570.5 
594.9 
628.4 
648.5 
450.2 
465.4 
494.0 
518.1 
519.2 
572.4 
601.4 
643.8 



Figure 11. Electromotive force In volts of cell Th/LlCl-KCl-34 wt.% 
ThCl4/Th2Znx7 In Zn as a function of temperature (°C) 
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These results agree well with the values obtained by Chlottl 

and 6111 (13) using vapor pressure measurements. Their 

results when fitted to a two constant equation can be ex­

pressed as 

AFjh2Zni7 " '1^5,000 + 72.IT calories/mole. (48) 

From this agreement, it would appear that at high concentra­

tions of thorium in the salt in equilibrium with the thorium-

zinc alloy,TheI4 is the predominant thorium chloride in solu­

tion. This observation is consistent with the predicted 

effect discussed in the previous section, i.e., that as the 

total thorium content in the salt becomes very high, the pre­

dominant species in solution should be ThCl^. 



81 

CONCLUSIONS AND SUMMARY 

The compounds ThClg and ThCl2 were prepared by reduction 

of ThCl4 with thorium. To prepare ThClg, stoichiometric 

amounts of ThCl^ and thorium for the reaction 

3ThCl4 + Th - 4ThCl3 (49) 

were equilibrated at 800°C for 26 hours, rapidly cooled, and 

equilibrated at 650°C for 64 hours. The resulting product was 

purplish-black with very little unreacted thorium evident. 

This product was heated under vacuum at 500°C for two hours to 

remove any unreacted ThCl^. The residue analyzed 33.2 wt.% CI 

and 63.3 wt.% Th, giving a chlorine to thorium ratio of 3.2 to 

lo An x-ray powder pattern of this material showed some weak 

ThCl^ lines plus many other lines concluded to be those of 

ThClg. These lines could not be indexed and probably repre­

sent a unit cell of orthorhomblc or lower symmetry. 

To prepare ThCl2, stoichiometric amounts of ThCl4 and 

thorium for the reaction 

ThCl4 + Th - 2ThCl2 (50) 

were equilibrated at 800°C for 26 hours, rapidly cooled, and 

equilibrated at 715°C for 64 hours. Some unreacted thorium 

still remained indicating that the reaction had not gone to 

completion. A gray black material was found on the surface 



82 

of the remaining thorium metal. The chemical analyses of this 

material were 76.3 wt.% Th and 24.0 wt.% CI, giving a chlorine 

to thorium ratio of 2.02 to 1. An x-ray analysis of this 

material gave a distinct but complex powder pattern which 

could not be accounted for by the powder patterns of ThCl^ or 

the pattern of the trichloride described above. The conclu­

sion is that this material is ThCl2. These lines could not be 

indexed and also probably represent a unit cell of orthorhom-

bic or lower symmetry. 

The possibility of the existence of a polynuclear cage 

complex in this system similar to those of tantalum, 

[Ta6Cli2]Cl2; discussed by Pauling (28) and recently investi­

gated by McCarley and Hughes (31) was considered. No definite 

evidence for the existence of such a complex was found. 

As a check that none of the lines in the x-ray powder 

patterns of the ThClg and ThCl2 were those of ThOCl2, they 

were compared with a pattern of the oxychloride. Stoichio­

metric amounts of ThCl^ and ThOCl2 for the reaction 

ThCl4 + Th02 - 2ThOCl2 (51) 

were equilibrated at 800°.C for 55 hours. The resulting 

ThOCl2 was composed of white, fluffy, acicular crystals very 

much like the ThOl2 described by Wylie (24). The x-ray . 
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powder pattern of the ThOCl2 showed a tremendous number of 

lines, none of which matched those of the ThClg or ThCl2. 

Thermal data obtained from equilibrated Th-ThCl^ mixtures 

are consistent with the existence of ThClg and ThCl2 and were 

used in constructing a tentative phase diagram. The data 

indicates that ThClg disproportionates at 698°C to ThCl^ and 

ThCl2, and that ThCl2 decomposes peritectically at 748°C. 

The disproportionation of ThClg may be represented by the 

reaction 

2ThCl3 - ThCl2 + ThCl4. (52) 

The data indicate negligible mutual solubility among these 

compounds, and therefore the standard free energies of forma­

tion at 698°C must satisfy the relation 

^^^ThCla ^^ThCl2 ^^ThCl4* (53) 

Glassner's (10) relations for the standard free energies 

of formation for ThCl^ and ThClg were simplified to give the 

relations 

AFThci4 = -286,400 + 129.2T - 19.3TlogT cal/mole (54) 

and AF^hcig = -231,800 + 96.9T - 13.8TlogT cal/mole. (55) 

The entropy of formation for ThCl2 at 298°K was assumed to be 

-36.1 calories/mole-degree and ACp of ThCl2 for the tempera­

ture range 298° to 1100°K was assumed to have a mean value 



84 

of 4.0 calories/mole-degree. With these assumptions and 

relation 53, the following equation for the standard free 

energy of formation of ThCl2 was derived: 

AFjhci2 = -172,900 + 62.9T - 9.2TlogT cal/mole. (56) 

The electromotive force of the cell Th/LiCl-KCl-ThCl^// 

LiCl-KCl-33 wt.% AgCl/Ag was measured for a concentration 

range of 0.1 to 32.4 wt.% ThCl^ in the salt and a temperature 

range of 450-650°C. The data obtained from this cell indicate 

that the activity coefficient of ThCl^ relative to the pure 

solid in LiCl-KCl is about 1 x 10"^ for these concentration 

and temperature ranges, and that this coefficient is rather 

insensitive to concentration and temperature, increasing only 

slightly with increased concentration and temperature. 

The activity coefficients of ThClg and UCI3 should be 

about the same since the ionic radii of Th"^^ and are very 

nearly equal (28). The activity coefficient of UCI3 in the 

LiCl-KCl eutectic has been found to be very nearly unity (29, 

30); therefore a value of one was assumed for the activity 

coefficient of ThClg in this salt. Experimental data of 

equilibrations of ThCl^ in LiCl-KCl with thorium metal indi­

cate that ThCl2 is relatively insoluble in the LiCl-KCl salt. 

These data indicate that the activity coefficient of ThCl2 
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relative to the pure solid is about 1 x 10^ at 700°C. 

With the values of the activity coefficients of the 

thorium chlorides in LiCl-KCl discussed above and the free 

energy data for these thorium chlorides and the thorium-zinc 

compound, Th^Zniy, the expected extents of the reactions 

ThCl4(in LiCl-KCl) + 1/6 Th2Zni7(s) -» (57) 

4/3 ThClgCin LiCl-KCl) + 17/6 Zn(4) 

and ThCl4(in LiCl-KCl) + ̂ ThgZn^y -» (58) 

2ThCl2(in LiCl-KCl) + 8.5Zn(4) 

were calculated. Calculations show that reaction 57 should be 

the predominant reaction occurring in the LiCl-KCl-liquid zinc 

system since the very large activity coefficient of ThCl2 and 

the very small activity coefficient of ThCl^ in the salt 

inhibit reaction 58. Experimental results of equilibrations 

of solutions of ThCl^ in the LiCl-KCl eutectic with Th2Zn2y 

in zinc agree well with the predicted ratios of NThClg/^ThCl^ 

in the salt. It was found that the relative amounts of ThClg 

and ThCl4 in the salt are dependent on the total thorium con­

centration in the salt and on temperature. Lower total 

thorium concentration in the salt and higher temperature are 

both found to favor higher N^hClg/^hCl^ ratios in the salt, 

i.e., these factors both shift reaction 57 to the right. It 
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is concluded that in the LlCl-KCl-liquid zinc system, the pre­

dominant thorium chlorides in solution are ThCl^ and ThClg, 

with the relative amounts of each depending on total thorium 

concentration in the salt and on temperature. 
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APPENDIX A 

Derivation of Equations 34 and 35 

Assume that the reaction 

ThCl4 + Th ̂  2ThCl2 (la) 

did not go to completion, but that the equilibrium 

ThCl4 + ThCl2 := 2ThCl3 (2a) 

is attained, where ThCl2 is an insoluble precipitate on the 

surface of the thorium metal. 

At equilibrium, the total moles of thorium, nj, is the 

sum of the moles of the tetra-, tri-, and dichlorides: 

nT = nThCl4 + PrhClg + *^ThCl2* (3a) 

Dividing both sides of this equation by £ n, the total moles 

of salt, gives this sum in terms of mole fractions: 

Nlh = NThCl4 + NThCl3 + NThCl2* (^a) 

Let n^ be the initial moles of ThCl4 added to the charge, 

nTh,R the moles of thorium which reacted, n2p the moles of 

ThCl2 that precipitated, and n2, ng, and n4 the moles of di-, 

tri-, and tetrachloride in the salt at equilibrium. Then con­

sidering the reactions 

ThCl4 + 1/3 Th - 4/3 ThClg (5a) 

and ThCl4 + Th 2ThCl2, (6a) 

the following equation may be written: 
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ni = n4 + 3/4 n3 + 1/2 n2 + 1/2 n2P. (7a) 

But necessarily the number of moles of thorium as ThCl^ that 

precipitated must be equal to the sum of the initial moles of 

thorium and the reacted moles of thorium minus the number of 

moles of thorium remaining in solution, i.e., 

n2P = n^ + HfhjR ~ (8a) 

Substituting this Equation 8a into Equation 7a, dividing by 

^ n, and rearranging giveis the following equation: 

%Ni - %NTh,R + %NTh = N-rhCU + 3/4 N^hCl] + 
(9a) 

^NxhCl2» 

where the subscripts have the same meanings as before, but 

the equation is now in terms of mole fractions instead of 

numbers of moles. Multiplying Equation 9a by 2 and subtract­

ing Equation 4a gives the following equation: 

Ni - NTH,R = + %%hci3' (10a) 

But we have assumed that-the equilibrium of reaction 2a has 

been established and also that the activity of ThCl2 is unity. 

Therefore the equilibrium constant of reaction 2a may be 

written 
2 2 2 2 

K = "rhCla^IhCla . "tHCIs '^Thcis . (ua) 

NThCX4YThCl4aThCl2 %hCl4 ̂ ThClA 

At 700°C, K = 1, YxhCls ' 1, and YThCl4 " 1 * 10'^. Substl-
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tubing these values into Equation 11a gives the relationship: 

NrhCl] -"V 10'^NThCl4 • (12a) 

Substituting this expression into Equation 10a gives 

Ni - NTh,R - MrhCl4 + 10"^Brhci4 • (13*) 

This is Equation 34 in the text. 

If Equation 9a is multiplied by 4/3 and then Equation 

4a is subtracted, from it, the following equation is obtained 

for NThCl2= 

I^hCl2 " NThCl4 " 2Ni + 2NTh,R + N-rh. (14a) 

This is Equation 35 in the text. 
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APPENDIX B 

Derivation of Equation 41 

The two reactions being considered are 

I. ThCl4 + 1/6 Th22ni7 - 4/3 ThClg + 2.8Zn (lb) 

and II. ThCl4 + %Th2Zni7 -» 2ThCl2 + 8.5Zn (2b) 

The equilibrium constants for these two reactions may be 

written 
4/3 

KI - KYI °ThCl3 1 (3b) 

°ThCl4 

and 

KlI - Kyii _L . (4b) 

%Cl4 ^ " 

where n denotes number of moles and ̂  n represents the total 

moles of salt phase. 

Equation 3b may be solved for n^hd^ In terms of njhCl4* 

"ThCls • <5'') 

Likewise Equation 4b may be solved for nphCl2 terms of 

nThClft! /K \ % 

'>ThCX2 -/^Y°ThCX4^ W 

But the total number of moles of thorium in the salt, n^h, is 

equal to: 

"Th • nThCl4 + "ThCla + ?rhCl2' (?%) 
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Substituting Equations 5b and-6b into Equation 7b gives: 

^/KI \3/4 3/4 1/4 
nih - nThCl4 + Ij nThCl4 (tn) + 

^ nThCl4^ (8b) 

Finally, dividing Equation 8b through by f/n, the total number 

of moles, gives: 

%h " "ThCl* + "rhCl^ + "01014 

(9b) 

This is Equation 26 in the text. 
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