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ABSTRACT

The aim of this paper is to compare two main
options dedicated to long-term energy production
with Thorium: solid fuel with fast spectrum and
molten salt with moderated neutrons. In both cases,
we have set up a speci�c system and studied its be-
haviour until it reaches the 232Th/233U equilibrium
from two di�erent starting fuels: 232Th/233U and
232Th/Pu, with Pu coming from PWR spent fuel.

All this work was done with the same computing
methods based on the coupling between a validated
neutron transport code and a numerical resolution
of the evolution equations which takes into account
the time dependence of the mean cross sections. Our
results consist in precise time evolutions of physi-
cal parameters, inventories and waste production,
allowing comparison of breeding performance and
induced radiotoxicities. From this comparison, the
molten salt solution appears to be more interesting

than the solid fuel reactor for a quick transition to
a signi�cant Thorium fuel cycle.

I. INTRODUCTION

Thorium is an attractive way to produce long-
term nuclear energy with low radiotoxicity waste.
Moreover, the transition to Thorium could be done
through the incineration of industrial Plutonium.
Contrary to the 238U/239Pu cycle in which bree-
ding can be obtained only with fast spectra, the
232Th/233U cycle can operate with either fast or
epithermal spectra. As a consequence, Thorium fuel
cycle reactors can use, with suitable reprocessing,
either solid fuel with fast neutrons or molten salt
with moderated neutrons.

A lead-cooled fast Accelerator-Driven System
(ADS) has already been studied in our group in the
frame of a comparative analysis of the Thorium and
Uranium fuel cycles [1]. The results of this study
concerning Thorium led us to compare them to the
case of a critical Molten Salt Reactor (MSR) cou-
pled to an online reprocessing unit, in order to com-
plete our study of the possible Thorium fuel cycles.
For our MSR, we chose a classical design, close to
the Molten Salt Breeder Reactor (MSBR) concept
which was studied in the early seventies at the Oak
Ridge National Laboratory [2].

Identical simulationprotocols were used for both
studies. Evolution programs which ensure the cou-
pling between the resolution of Bateman equations
and the Monte-Carlo code MCNP [3] aim at fully
integrating the constraints and 
exibility of each
system. This is especially important in the case of
the MSR whose simulated feeding and extracting

processes can be adjusted during the calculation.
All the data are thus known precisely from start-up
to equilibrium.

In this paper we describe �rst the two speci�c
systems. Next comes a general presentation of the
methods used in our simulations. Once systems and
methods are de�ned, we detail our studies with the
232Th/233U starting fuel and compare their main re-
sults in terms of breeding performance and induced
radiotoxicities. For both options, we discuss then
the possibility of using Plutonium extracted from
PWR spent fuel as an initial �ssile inventory in or-
der to reach the 232Th/233U equilibrium. Finally,
we compare the two systems starting with Pluto-
nium or 233U if available within a French scenario
of transition to Thorium.
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II. SYSTEMS

A. Main Characteristics of the Fast ADS

The system is subcritical (ks ' 0.98), driven by a
1 GeV proton beam incident on a lead target where
neutrons are produced by spallation (spectrum cal-
culated by the code FLUKA [4]). MCNP transports
neutrons into the core, where a hexagonal array of
steel needles contains the fuel. The re
ector and the
coolant are lead. The detailed geometry is described
in Ref. [1].

Depending on its fuel, the reactor has di�erent
thermal powers. In the following, if not otherwise
speci�ed, all results are normalized to the same ther-
mal power as the MSR: 2500 MWth.

B. The Graphite-Moderated MSR Design

   moderator
(graphite)

control rod
   (graphite)
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Fig. 1 { Schematic view of the simulated MSR.

The MSR design has been chosen as classical as
possible (Fig. 1). Its MCNP description is neverthe-
less very precise. Preliminary evaluations, in parti-

cular of heat transfers and neutron losses, provided
the main dimensions of the device.

The core is a cylindrical assembly (2.3 m radius,
4.6 m high) of high density graphite (2.3 g.cm�3)
hexagons (15 cm side), each pierced by a channel
(15 cm diameter) for molten salt circulation. The
graphite radial re
ector is 50 cm thick. The heat
exchangers are simulated by a 10 cm thick crown
of salt sandwiched between boron loaded graphite

(B4C). Above and under the core are located salt
tanks (30 cm high each) and graphite axial re
ec-
tors (1.3 m high each). The total salt volume (mol-
ten salt circuit) is 46.0 m3 = 20.5 (core channels)
+ 10.2 (tanks) + 15.3 (heat exchanger).

III. CALCULATION METHODS

A. Basic Principles

The general method is described and justi�ed in
Ref [1]. MCNP is a static code, which means that it
cannot take into account a possible important time
evolution of the neutron spectrum and consequently
of the mean cross sections. We have thus to regu-
larly compute new mean cross sections, especially
with moderated neutrons.

In all our studies, we have coupled MCNP to
a program which solves the evolution di�erential
equations by a 4th order Runge-Kutta method. A
MCNP calculation is done each time the user-de�ned
precision on the calculated abundances of nuclides
requires it.

B. Improvements for MSR studies

1. Exploitation of Nuclear Data Bases

In order to achieve precise calculations, we had
to use explicit rather than pseudo Fission Product

cross sections. This need led us to integrate the nu-
clear data processing code NJOY [5] in our pro-
grams to build our own MCNP data �les from the
existing bases (ENDF-B/VI, JENDL3.2 and JEF2.2).

Moreover, NJOY allows us to compute e�ects
like Doppler and thermal scattering in graphite. We
chose 900 K as the temperature for the salt and
all other materials in the core, 600 K for the axial
re
ectors and 300 K for the steel vessel.

2. Modelisation of the MSR Reprocessing

HN inventory
constant

Pa +       U231

Th232

Pa

233

   HN losses

MSR 

         FP waste

                              U production Pa decay 233 233

effk       = 1

Fig. 2 { Flow diagram of the simulated reprocessing.

Contrary to the ADS for which the fuel repro-
cessing takes place every 5 years, we simulate in
the MSR case a MSBR-like online fuel reprocessing
unit. Fig. 2 shows the reprocessing material 
ows
that we take into account. HN stands for Heavy Nu-
clei (nuclei from Thorium to Californium), and FP
for Fission Products. There are two types of such

ows: feeding and extraction.
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In all studies, the total Heavy Nuclei inventory
is kept constant by means of a variable 232Th fertile
feeding. Concerning the �ssile feeding (233U for ins-
tance), its 
ow is regularly adjusted in function of
the evolution of keff (partial derivates of keff with
time and 233U 
ow), in order to maintain criticality.
Finally, Li, Be and F additions aim at taking care
of chemical constraints.

The extraction of the isotope i of a chemical
element e is simulated by a pseudo-decay whose
constant is

�i =
"e

�r
;

where "e is the extraction e�ciency for e and �r the
time it takes for the whole salt volume to be repro-
cessed (as in the MSBR project, we take �r = 10
days). We assume that all extractions are based on
the liquid-liquid extraction process, which amounts
to exchanging Thorium and Lithium dissolved in
molten Bismuth for the constituents to be removed
from the salt (FPs and Pa).

Some FPs are chemically so close to Thorium
that their extraction e�ciencies are lowered by this
technique [2]. FPs are thus subdivided in 3 catego-
ries whose respective e�ciencies are 20% (halogens
and rare earths, like for example, in decreasing or-
der of concentration in a 232Th/233U salt at equi-
librium: Ce, Nd, Y, La, Pr, ...), 5% (Zr and semi-
noble metals: Sn, Sb, ...) and 1% (alkaline elements:
Sr, Cs, Ba, Rb, ...) [6]. Rare gases and noble metal
dust escape from the salt circuit in less than one
minute with 
owing Helium [7].

In the following, Protactinium is extracted with
100% e�ciency within the 10-day reprocessing time.
This is the main way to breed 233U, as we will see in
the next section. After su�cient 233Pa decay, Pro-
tactinium is reinjected with the 233U feeding, in or-
der to limit the radiotoxic 231Pa inventory.

Likewise, Heavy Nuclei reprocessing losses are
simulated by a pseudo-decay with an optimistic but

conceivable e�ciency "HN of 10�5 [8].

IV. 232Th/233U REACTORS

A. Breeding Conditions

1. Solid Fuel Case : reactivity variations im-

pose reprocessing rates

Thanks to a suitable initial �ssile proportion,
the multiplication factor ks remains constant during
about 6 years but then starts to drop because of the

decreasing breeding performance and the increasing
FP poisoning. Recycling for the ADS consists thus
in removing every 5 years all Fission Products from
the fuel and replacing the used mass of Thorium.

In the breeding con�guration, a Thorium blan-
ket is added around the core and replaced by a new
one every two months in order to prevent any ex-
cessive reactivity increase [9]. The 233U produced is
extracted and stored.

This way, about 10% of the initial 233U inven-
tory are produced within 5 years in the blanket.
The fuel used in the core during this 5-year period
is extracted, replaced by a fresh one, let cool down
during 5 years and then topped with 232Th and a
little 233U and reinserted in the core for a new 5-
year burn-up. As a consequence, it takes 10 years
to breed 10% of the whole �ssile inventory, which
means the doubling time is about 100 years.

2. Molten Salt Case : suitable salt composi-

tion and reprocessing allow good breeding

The carrier salt that we chose is LiF-BeF2, with
LiF at 80 mol% (\4LiF-BeF2"). Lithium is 7Li at
99.995 mol%. In this salt, the Heavy Nuclei (only
232Th and 233U at start-up) are at 12.5 mol%: LiF-
BeF2-(HN)F4 at 70-17.5-12.5 mol% respectively.

This composition is close to the MSBR one, whose
main physico-chemical properties like density (3.3
g.cm�3 at 900 K) are well-known.

Heavy Nuclei proportion
in 4LiF-BeF2 (mol%)

10 12.5 15

initial 232Th
inventory (tons)

56 67 77

initial 233U

inventory (tons)
1.0 1.1 1.3

233U production
after 50 years (tons)

1.4 2.1 2.6

average doubling time
after 50 years (y)

36 26 25

Tab. 1 { Initial inventories and breeding perfor-
mance for di�erent salt compositions.

Table 1 shows that the chosen Heavy Nuclei
proportion in 4LiF-BeF2 ensures minimal doubling
time and initial �ssile inventory to within about a
percent. 233U production after 50 years is simply
the di�erence between the total mass of 233U pro-
duced by Pa decay and the total mass of 233U used
in the �ssile feeding for reactivity control (Fig. 2).
The average doubling time after 50 years is obtained
directly from the number of 233U initial inventories
contained in this production.

The conversion ratio C at equilibrium is ob-
tained by dividing the 233U production rate (2.14
kg/day from Pa decay) by the 233U feeding 
ow
(2.04 kg/day), which gives C = 1.05 (�0.01, due to
uncertainties in nuclear data).
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The 233Pa inventory at equilibrium is only 20
kg with the reprocessing chosen. We �nd that wi-
thout Pa extraction, the 233Pa inventory stabilizes
to about 100 kg, which is similar to that of the so-
lid fuel ADS. In this case, C = 0.99 at equilibrium,
which means that the MSR is no longer breeding
but just converting.

Criticality imposes 98.4% 232Th - 1.6% 233U as
the starting Heavy Nuclei molar composition with
the salt chosen. The reactor with solid fuel has a si-
milarHeavy Nuclei inventory in mass; about 70 tons
of Thorium and Uranium oxides. However, the 233U
proportion is much larger. Indeed the initial molar
composition in the ADS fuel is 90.5% 232ThO2 -
9.5% 233UO2, with about 6 tons of 233U.

B. Transitions to Equilibrium

1. Fission Products

In the solid fuel case, the FP inventory increases
linearly from 0 to about 5 tons in 5 full power years.

The inventory averaged over 5 years is 2.05 104

moles, the mean capture cross section 0.15 barn and
the mean 
ux in the fuel 1.70 1015 n.cm�2.s�1. The
mean FP capture rate is thus 0.45 mol/day.
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Fig. 3 { FP transitions in the MSR.

With molten salt, there is only one FP transient
episode. Fig. 3 shows that the FP inventory stabi-
lizes to 210 kg (1910 moles) within about 5 years.
The mean capture cross section at equilibrium is
2.4 barn and the 
ux averaged over the whole mol-
ten salt circuit is 3.2 1014 n.cm�2.s�1, which gives
a mean FP capture rate of 0.13 mol/day.

Contrary to the solid fuel FP poisoning, that
of the molten salt can be limited more easily by
means of an almost continuous fuel reprocessing and
is actually 3 times lower here.

2. Uranium and Transuranic Elements

The Uranium inventories at equilibriumare much
lower in the MSR case (Fig. 4) than with the fast

spectrum solid fuel system (5800 kg of 233U, 1900
kg of 234U, 460 kg of 235U and 380 kg of 236U).

In the MSR, we �nd that, through the conti-
nuous �ssile feeding, the 233U inventory increases
slowly from 1.1 to about 1.2 tons, essentially be-
cause of the transient FP poisoning.
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Fig. 4 { U, Pu and MA inventories in the MSR.

The main di�erence concerning transuranic ele-
ments is the time it takes for their inventories to
reach equilibrium. Fig. 4 shows that in the molten
salt case, Minor Actinides (MA = Np, Am and Cm)
stabilize after about 50 years of energy production.
In the solid fuel reactor, these elements do not sta-
bilize before 100 years.

The two main transuranic nuclei in the solid
fuel fast reactor at equilibrium are 237Np (83 kg)
and 238Pu (58 kg). The spectrum is fast enough to

prevent the inventories of Am and Cm isotopes from
being signi�cant (less than 1 kg after 100 years of
energy production).

In the epithermal spectrum case of the MSR,
the Np inventory is lower (44 kg of 237Np) and the
Pu inventory is similar to that of the fast ADS with
the same main component (49 kg of 238Pu in 66 kg
of Pu). But the Am and Cm inventories are much
higher (about 4 kg of 243Am, 8 kg of 244Cm and 5
kg of 246Cm at equilibrium).

C. Neutronics at Equilibrium

1. Neutron balance

Table 2 shows the neutron balance in the MSR
fuel circuit at equilibrium.We �nd that 235U contri-
butes to almost 10% of �ssions. As for captures,
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233U (7.8%) and 234U (8.1%) are the most captu-
ring nuclei after 232Th. FPs and Pa capture together
less than the light components of the salt (\salt" =
Li, Be and F), whose total neutron consumption is
itself very low compared to that of Heavy Nuclei.

Production Disappearance

Fission 2.50 1.00

233U 87:8%
235U 9:2%
239Pu 1:2%
241Pu 0:5%
others 1:3%

(n; 2n) 0.02 0.01
9Be 91:8%

232Th 8:2%

(n; 
) - 1.41

salt 2:2%
FP 1:1%

232Th 73:0%
233Pa 0:4%
U 18:9%
Pu 2:6%
MA 1:8%

Losses - 0.10 -

Tab. 2 { Detailed neutron balance (neutrons per �s-

sion) in the molten salt circuit at equilibrium. The
last column gives the probabilities of absorption by
di�erent nuclei for each reaction.

In the fast spectrum case, the 232Th/233U fuel
has the same value for � (2.50) as in the molten salt
case. But the ADS subcriticality amounts, in terms
of neutron balance, to dividing � by the multipli-
cation factor ks [10]. This gives to the ADS about
0.05 more neutrons per �ssion available for breeding
than the MSR.

However, neutron losses from the fuel are higher
in the ADS without Thorium blanket (0.16), which
cancels the gain obtained from subcriticality. These
neutron losses from the fuel can be lowered in both
cases by adding a Thorium blanket, which is man-
datory for breeding in the solid fuel case. Finally,
compared to critical solid fuel reactors, MSRs need
a much smaller reactivity reserve at start-up thanks
to the regular �ssile feeding.

2. Neutron spectrum

Fig. 5 shows the neutron spectra at equilibrium
averaged over the solid fuel of the ADS and the
whole molten salt circuit of the MSR. On the MSR
spectrum, we notice resonance self-shielding e�ects

due to capture resonances of 232Th (at 20 eV) and
19F (above a few tens of keV). This spectrum is said
to be epithermal, relatively 
at (from 0.1 eV up to
1 MeV) compared to the ADS classical fast spec-
trum, whose maximum is around 200 keV.
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Fig. 5 { Average neutron spectra in the solid and
molten salt fuels at equilibrium.

Table 3 shows the mean cross sections of im-

portant reactions of the 232Th/233U cycle. Some re-
markable di�erences in these data illustrate the res-
pective constraints and advantages of both systems
towards 233U breeding.

solid fuel molten salt

�ssion capture �ssion capture
232Th 0.008 0.32 0.008 1.36
233Pa 0.055 1.05 0.055 20.1
233U 2.73 0.27 49.6 6.2

Flux 1.70 1015 3.2 1014

Tab. 3 {Mean cross sections (�ssion and (n,
) cap-
ture, barn) and 
uxes (n.cm�2.s�1) in the whole
fuel of each system at equilibrium.

The 232Th inventories at equilibrium are about
2.4 105 moles in the ADS core and 2.9 105 moles in
the MSR molten salt circuit. Looking at the 232Th
capture cross sections and at the mean 
uxes, we
notice that both 232Th capture rates are equal to
about 1.3 10�4 mol/s, which is close to the total
�ssion rate of 11.2 mol/day imposed by the constant
power of 2500 MWth.

Concerning Protactinium, it is obvious that its
reprocessing is a necessity for the MSR, because of
a much higher capture cross section.

Finally, the higher 233U �ssion cross section in
the molten salt fuel explains that the 233U inventory
is about 6 times lower in the MSR, which is the
main reason for its good breeding performance. The
better neutron balance of 233U �ssion in the ADS
(1.10 neutrons captured for one �ssion against 1.13
in the MSR) has no signi�cant in
uence.
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D. Radiotoxicities

The radiotoxicity by ingestion of a mixture of
radionuclides R (Sv) is calculated as

R =
X

i

Fi Ai;

where Ai is the activity (Bq) of the i
th ingested nu-

cleus and Fi its dose coe�cient (Sv/Bq). We used
Fi values for workers appearing in the Publication
68 [11] of the International Commission on Radio-
logical Protection (ICRP). By means of the code
DECAY [12], we obtain for each isotope present in
the initial mixture the time evolution of the radio-
toxicity due to its decay and to the decay of its
daughters.

1. Waste Radiotoxicities at Equilibrium

The assumed fractions of each element going to
waste are comparable for the two types of fuel. In
the solid fuel case, 0.1 % of Uranium and Plutonium

and 1.0 % of Protactinium and Minor Actinides are
lost every 5 years [1]. Within the same period, the
MSR reprocessing detailed in III.B.2. amounts to
losses of 0.2 % for all Heavy Nuclei.
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Fig. 6 { Radiotoxicity due to the Heavy Nuclei
losses of the MSR at equilibrium.

Fig. 6 shows the radiotoxicity due to the Heavy
Nuclei losses at equilibrium normalized to an energy
production of 1 GWth.year. The initial level is, as
with the solid fuel ADS, about 30 times lower than
in the 238U/239Pu cycle [1].

In both cases, at equilibrium, the principal contri-

butions to waste radiotoxicity come mainly from
238Pu (during the �rst 1000 years after discharge)
and then from 233U. At t=0 and 105 y, the maxi-
mal levels respectively due to 238Pu and 233U are
approximately the same for the two systems.

At t=103 y, the total radiotoxicity is minimal.
In the fast ADS case, 231Pa dominates waste radio-
toxicity at this time. In the MSR softer spectrum,
231Pa production (by (n,2n) on 232Th) is slower and
231Pa disappearance by capture faster, which ex-
plains that the 231Pa inventory is about 20 times
smaller than in the ADS. We �nd that the 231Pa
contribution to waste radiotoxicity 1000 years af-
ter discharge is about 100 times lower for the MSR,
which is consistent with the respective Pa reproces-
sing losses (5 times lower in the MSR case).

2. Total Radiotoxicities for 200 Years of Ener-

gy Production
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Fig. 7 { Radiotoxicities, 1000 years after discharge,
due to the total Heavy Nuclei losses and the �nal
inventory after 200 years of energy production.

Fig. 7 shows the radiotoxicities generated 1000
years after discharge by 200 years of continuous
energy production, per unit of installed thermal ca-
pacity (Sv/GWth). The contributions of the ac-
cumulated HN losses and the �nal inventory are

given for each system. All values are much lower
than the R[1000 y] total values of PWR UOX and
238U/239Pu spent fuels, respectively estimated to be
3.4 1010 and 1.2 1010 Sv/GWth.

Thanks to a lower HN inventory (in particular
for 231Pa), the R[1000 y] value of the MSR total
losses is about 5 times lower than that obtained
with the solid fuel system. We �nd the same fac-
tor in favour of the molten salt option for the �nal
inventory contribution and the total value.

V. STARTING WITH Pu FROM PWR

In order to start a Thorium fuel cycle, Pluto-
nium from PWR spent fuel can be used in both
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systems as the initial �ssile inventory with Thorium
in \232Th/Pu!233U" reactors. While Plutonium is
burnt, 233U is produced and accumulates in the fuel
until the 232Th/233U equilibrium is reached.

Concerning the MSR, keeping the HN inventory
constant amounts to replacing the burnt Plutonium
(PuF3) by addition of Thorium (ThF4) in the salt.
We chose thus the same HN proportion in the salt
as with the 232Th/233U fuel, so that the same opti-
mal equilibrium towards breeding is reached.

238Pu 239Pu 240Pu 241Pu 242Pu

3.1 52.5 24.5 12.2 7.7

Tab. 4 { Isotopic composition (mol%) of Pu extrac-
ted from 5-year-old PWR UOX spent fuel.

In the following, the Plutonium that we use in
our solid fuel and molten salt 232Th/Pu!233U reac-
tors is let cool down during 5 years within the PWR
UOX spent fuel before its extraction and use. Table
4 gives the isotopic molar composition of this Plu-
tonium (\Pu" from now).

We need about 12 tons of this Pu to start the
232Th/Pu!233U ADS, whereas the MSR needs only
4 tons of the same Pu in order to be critical at start-
up. Pu concentration in the molten salt stays below
1 mol%, which prevents precipitation problems.

A. From Pu burning to 233U breeding
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Fig. 8 { Principal inventories within the �rst 20
years of the 232Th/Pu!233U MSR.

Fig. 8 illustrates the Pu burning episode in the
MSR, �rst through the evolution of the total U, Pu
and MA inventories. From t=15 y, the Pu inventory
is below its 232Th/233U equilibrium value. In the
following, we consider thus that from this time the

initial Pu is forgotten and that the system operates
roughly as with the 232Th/233U fuel. This is only
an approximation, in so far as the MA inventory is
longer to reach its 232Th/233U equilibrium value of
about 60 kg. It is maximal at 10 years (450 kg) and
then starts to drop (240 kg at 20 years, 120 kg at
30 years, ...).

The lower part of Fig. 8 shows the inventories of
the principal �ssile nuclei. During the �rst 5 years,
233U accumulates up to 1.5 tons through its feeding,
in order to maintain criticality in spite of the in-
creasing MA poisoning. At 15 years, 233U and 235U
have de�nitively replaced the �ssile isotopes of the
initial Pu and reached their 232Th/233U equilibrium
inventories.

Thorium replaces progressively the burnt Plu-
tonium in order to keep the total HN inventory
constant. In consequence, the Thorium capture rate
(8 mol/day at start-up) increases until it reaches its
232Th/233U equilibrium value of about 11 mol/day
at 10 years.

B. French Transition to Thorium at Constant

Power

Here, we want to compare the two systems by
putting them in a context of transition to Thorium
applied to the present French situation. The impor-
tant point is that our simplifying hypotheses are
the same for both scenarios. The main constraint
on each scenario is that the total installed power is
constant and equal to 60 GWe.
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Fig. 9 { Evolution of the number of installed GWe
in French transition to Thorium scenarios based on
solid fuel (a) or molten salt (b) reactors.

We assume that the Pu reprocessing into MOX
fuel stops in 2010. From 2015, Pu extracted from
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5-year-old PWR UOX spent fuel is thus available
at the rate of 12 tons per year for 232Th/Pu!233U
reactors (only this \Pu" is used for the transition).
As soon as 233U is produced, it may be used in
order to start directly the 232Th/233U reactors. If
the total power is still below 60 GWe, new PWRs
have to be installed. Every reactor has a 1 GWe
power and a 50-year lifetime.

Fig. 9 shows that, with these constraints, more
than 30 new PWRs are necessary in the scenario ba-
sed on the solid fuel reactors. Indeed, the initial Pu
inventory of the 232Th/Pu!233U solid fuel reactor
is 12 tons and only one can be started-up every year.
In this scenario, the last PWR should be installed
in 2040, and therefore the 100% Thorium-based fuel
cycle should be reached in 2090. The long doubling
time (about 100 years against 25 years for the MSR)
is not really a problem, since we just want to keep
the total power constant.

Thanks to a 3 times lower Pu initial inventory (4
tons), the molten salt scenario needs no additional
PWR. In 2040, when the last PWR should stop,

the youngest 232Th/Pu!233U reactor should be 15
years old. At this time, the whole fuel cycle should
be close to the 232Th/233U equilibrium.

VI. CONCLUSION

The results presented in this paper emphasize
the main advantages of using molten salt rather
than solid fuel reactors for transition to Thorium.
The better breeding and radiotoxicity performance
of the MSR are mainly due to much lower invento-
ries and a greater freedom in fuel reprocessing.

In the case of a transition to Thorium scenario
at constant nuclear power for an already develo-
ped country, the molten salt option is faster but
solid fuel remains a solution. This is no longer true
in world-wide scenarios, when we take into account
the general evolution of energy needs and ecologi-
cal problems. From this point of view, an intensive
contribution of nuclear power seems to be a realis-

tic way to reduce the CO2 emissions while satis-
fying the increasing demand for energy in emerging
countries [13]. In this context, the 232Th/233U fast
reactor is no longer competitive, because of too slow
breeding. The 238U/239Pu fast reactor is then the
only competitor of the 232Th/233U MSR, but its in-
duced radiotoxicities are considerably higher.

Our detailed studies remind us of the well-known
advantages of the MSR with Thorium. It is all the
more interesting to rediscover the molten salt option
since it can play a signi�cant role in future nuclear
energy production. Therefore, the already conside-
rable knowledge of molten salt systems should be

completed by new simulations and experiments, par-
ticularly on safety and chemistry aspects.
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